हिंदी

If a = ⎡ ⎢ ⎣ 5 2 X Y Z − 3 4 T − 7 ⎤ ⎥ ⎦ is a Symmetric Matrix, Find X, Y, Z and T. - Mathematics

Advertisements
Advertisements

प्रश्न

If the matrix \[A = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\]  is a symmetric matrix, find xyz and t.
 

 

योग

उत्तर

\[Given: \hspace{0.167em} A = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\] 

\[ \Rightarrow A^T = \begin{bmatrix}5 & y & 4 \\ 2 & z & t \\ x & - 3 & - 7\end{bmatrix}\] 

Since A is a symmetric matrix,`( A^T)` = A . 

\[ \Rightarrow \begin{bmatrix}5 & y & 4 \\ 2 & z & t \\ x & - 3 & - 7\end{bmatrix} = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\] 

The corresponding elements of two equal matrices are equal . 

\[ \therefore x = 4 \] 

\[ y = 2 \] 

\[ z = z \] 

\[ t = - 3\] 

Hence, `x = 4, y = 2, t = - 3` and z can have any value .

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.5 [पृष्ठ ६१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.5 | Q 3 | पृष्ठ ६१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`

Find BA


Compute the indicated product:

`[(a,b),(-b,a)][(a,-b),(b,a)]`


Compute the indicated product.

`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`


A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.


If


If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.


If [1 1 x] `[[1         0            2],[0           2         1],[2            1           0]] [[1],[1],[1]]` = 0, find x.


If 

 


If A=, find k such that A2 = kA − 2I2

 

If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0


If A=then find λ, μ so that A2 = λA + μI

 

If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.


If f (x) = x2 − 2x, find f (A), where A=


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0


Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`


If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then  show that `(A+B)^2=A^2+B^2`


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.


Give examples of matrices

A and B such that AB = O but BA ≠ O.


If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:

(i) ₹50       (ii) ₹20       (iii) ₹40

The number of attempts made in three villages XY and Z are given below:

          (i)               (ii)              (iii)
X      400              300             100
Y      300              250               75
Z      500              400             150

Find the total cost incurred by the organisation for three villages separately, using matrices.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

(AB)T = BT AT

 

If `A= [[3],[5],[2]]` And B=[1  0   4] , Verify that `(AB)^T=B^TA^T` 


If  \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A3.

 

 


If \[A = \begin{bmatrix}- 3 & 0 \\ 0 & - 3\end{bmatrix}\] , find A4.


If A is a square matrix such that A2 = A, then write the value of 7A − (I + A)3, where I is the identity matrix.


Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.


If matrix A = [aij]2×2, where aij `{:(= 1  "if i" ≠ "j"),(= 0  "if i" = "j"):}` then A2 is equal to ______.


If A `= [(1,3),(3,4)]` and A2 − kA − 5I = 0, then the value of k is ______.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total amount of money collected by all three schools DPS, CVC, and KVS?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×