हिंदी

If A=`[[2,3],[1,2]]` And I= `[[1,0],[0,1]]` Then Find λ, μ So That A2 = λA + μI - Mathematics

Advertisements
Advertisements

प्रश्न

If A=then find λ, μ so that A2 = λA + μI

 
योग

उत्तर

\[Given: A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]

\[Now, \]

\[ A^2 = AA\]

\[ \Rightarrow A^2 = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]

\[ \Rightarrow A^2 = \begin{bmatrix}4 + 3 & 6 + 6 \\ 2 + 2 & 3 + 4\end{bmatrix}\]

\[ \Rightarrow A^2 = \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix}\]

\[\]

` A^2 = λA + µ I`

\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \lambda\begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix} + \mu\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \begin{bmatrix}2\lambda & 3\lambda \\ \lambda & 2\lambda\end{bmatrix} + \begin{bmatrix}\mu & 0 \\ 0 & \mu\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \begin{bmatrix}2\lambda + \mu & 3\lambda + 0 \\ \lambda + 0 & 2\lambda + \mu\end{bmatrix}\]

\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \begin{bmatrix}2\lambda + \mu & 3\lambda \\ \lambda & 2\lambda + \mu\end{bmatrix}\]

\[\]

The corresponding elements of two equal matrices are equal . 

\[ \therefore 7 = 2\lambda + \mu . . . \left( 1 \right)\]

\[ 12 = 3\lambda\]

\[ \Rightarrow \lambda = \frac{12}{3} = 4\]

 

Putting the value of λ in eq . (1), we get 

\[7 = 2\left( 4 \right) + \mu\]

\[ \Rightarrow 7 - 8 = \mu\]

\[\]

\[ \therefore \mu = - 1\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 5 Algebra of Matrices
Exercise 5.3 | Q 38 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Let `A = [(2,4),(3,2)] , B = [(1,3),(-2,5)], C = [(-2,5),(3,4)]`   

Find AB


Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


Evaluate the following:

`[[1     -1],[0            2],[2           3]]`  `([[1     0        2],[2        0        1]]-[[0             1                 2],[1           0                    2]])`


If A = `[[1     0],[0        1]]`,B`[[1            0],[0       -1]]`

and C= `[[0      1],[1       0]]` 

, then show that A2 = B2 = C2 = I2.

 

If A =`[[2     -3          -5],[-1             4           5],[1           -3       -4]]` and B =`[[2         -2            -4],[-1               3                  4],[1            2           -3]]`

, show that AB = A and BA = B.

 

For the following matrices verify the associativity of matrix multiplication i.e. (ABC = A(BC):

`A=[[4       2        3],[1       1          2],[3         0          1]]`=`B=[[1        -1          1],[0         1            2],[2           -1          1]]` and  `C= [[1       2       -1],[3       0         1],[0         0         1]]` 


 If  \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\]     ,  Show that A2 = I3.


If [1 1 x] `[[1         0            2],[0           2         1],[2            1           0]] [[1],[1],[1]]` = 0, find x.


Solve the matrix equations:

`[x1][[1,0],[-2,-3]][[x],[5]]=0`


Solve the matrix equations:

`[1  2   1] [[1,2,0],[2,0,1],[1,0 ,2]][[0],[2],[x]]=0`


Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`


Give examples of matrices
A and B such that AB ≠ BA


Give examples of matrices

 A and B such that AB = O but A ≠ 0, B ≠ 0.


Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?

 

Three shopkeepers AB and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.

 

The cooperative stores of a particular school has 10 dozen physics books, 8 dozen chemistry books and 5 dozen mathematics books. Their selling prices are Rs. 8.30, Rs. 3.45 and Rs. 4.50 each respectively. Find the total amount the store will receive from selling all the items.

 

There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?


In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array} \text{Telephone}\\{\text{House calls }}\\ \text{Letters}\end{array}\]

The number of contacts of each type made in two cities X and Y is given in the matrix B as

\[\begin{array}"Telephone & House calls & Letters\end{array}\]

\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City   X \\ City Y\end{array}\]

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote − party's promotional activity of their social activities?

 

A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.

 

Let  `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that 

 (2A)T = 2AT


 If \[A = \begin{bmatrix}\sin \alpha & \cos \alpha \\ - \cos \alpha & \sin \alpha\end{bmatrix}\] , verify that AT A = I2.
 

If the matrix \[A = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\]  is a symmetric matrix, find xyz and t.
 

 


Given an example of two non-zero 2 × 2 matrices A and such that AB = O.

 

If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.

 

 


 If \[A = \begin{bmatrix}- 1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\] , find A2.
 

 


For any square matrix write whether AAT is symmetric or skew-symmetric.


If AB = A and BA = B, where A and B are square matrices,  then


If A and B are two matrices such that AB = A and BA = B, then B2 is equal to


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to 


If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y


Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


If A and B are square matrices of the same order, then [k (A – B)]′ = ______.


If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:

x – 2y = 3

2x – y – z = 2

–2y + z = 3


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×