Advertisements
Advertisements
प्रश्न
If A=then find λ, μ so that A2 = λA + μI
उत्तर
\[Given: A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]
\[Now, \]
\[ A^2 = AA\]
\[ \Rightarrow A^2 = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}4 + 3 & 6 + 6 \\ 2 + 2 & 3 + 4\end{bmatrix}\]
\[ \Rightarrow A^2 = \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix}\]
\[\]
` A^2 = λA + µ I`
\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \lambda\begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix} + \mu\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \begin{bmatrix}2\lambda & 3\lambda \\ \lambda & 2\lambda\end{bmatrix} + \begin{bmatrix}\mu & 0 \\ 0 & \mu\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \begin{bmatrix}2\lambda + \mu & 3\lambda + 0 \\ \lambda + 0 & 2\lambda + \mu\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}7 & 12 \\ 4 & 7\end{bmatrix} = \begin{bmatrix}2\lambda + \mu & 3\lambda \\ \lambda & 2\lambda + \mu\end{bmatrix}\]
\[\]
The corresponding elements of two equal matrices are equal .
\[ \therefore 7 = 2\lambda + \mu . . . \left( 1 \right)\]
\[ 12 = 3\lambda\]
\[ \Rightarrow \lambda = \frac{12}{3} = 4\]
Putting the value of λ in eq . (1), we get
\[7 = 2\left( 4 \right) + \mu\]
\[ \Rightarrow 7 - 8 = \mu\]
\[\]
\[ \therefore \mu = - 1\]
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(2,1),(3,2),(-1,1)][(1,0,1),(-1,2,1)]`
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A=[[3 2],[-1 0],[-1 1]]` and `B= [[4 5 6],[0 1 2]]`
If A = `[[4 2],[-1 1]]`
, prove that (A − 2I) (A − 3I) = O
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A =-[[1 2 0],[-1 0 1]]`,`B=[[1 0],[-1 2],[0 3]]` and C= `[[1],[-1]]`
If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] and C=[[1 5 2],[-1 1 0],[0 -1 1]]` verify that A (B − C) = AB − AC.
If [x 4 1] `[[2 1 2],[1 0 2],[0 2 -4]]` `[[x],[4],[-1]]` = 0, find x.
If [1 −1 x] `[[0 1 -1],[2 1 3],[1 1 1]] [[0],[1],[1]]=`= 0, find x.
If
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
Give examples of matrices
A and B such that AB ≠ BA
Give examples of matrices
A and B such that AB = O but BA ≠ O.
If A and B are square matrices of the same order such that AB = BA, then show that (A + B)2 = A2 + 2AB + B2.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
There are 2 families A and B. There are 4 men, 6 women and 2 children in family A, and 2 men, 2 women and 4 children in family B. The recommend daily amount of calories is 2400 for men, 1900 for women, 1800 for children and 45 grams of proteins for men, 55 grams for women and 33 grams for children. Represent the above information using matrix. Using matrix multiplication, calculate the total requirement of calories and proteins for each of the two families. What awareness can you create among people about the planned diet from this question?
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If I is the identity matrix and A is a square matrix such that A2 = A, then what is the value of (I + A)2 = 3A?
What is the total number of 2 × 2 matrices with each entry 0 or 1?
If AB = A and BA = B, where A and B are square matrices, then
If A and B are two matrices such n that AB = B and BA = A , `A^2 + B^2` is equal to
If \[A = \begin{bmatrix}1 & 2 & x \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix} and B = \begin{bmatrix}1 & - 2 & y \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\] and AB = I3, then x + y equals
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
The matrix \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
If A and B are square matrices of the same order, then (kA)′ = ______. (k is any scalar)
If A, B and C are square matrices of same order, then AB = AC always implies that B = C
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.
If A = `[(a, b),(b, a)]` and A2 = `[(α, β),(β, α)]`, then ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3