मराठी

If A= `[[1 0 -2],[3 -1 0],[-2 1 1]]` B=,`[[0 5 -4],[-2 1 3],[-1 0 2]] And C=[[1 5 2],[-1 1 0],[0 -1 1]]` Verify That A (B − C) = Ab − Ac. - Mathematics

Advertisements
Advertisements

प्रश्न

If A= `[[1        0           -2],[3        -1           0],[-2              1               1]]` B=,`[[0         5           -4],[-2          1             3],[-1          0              2]] and  C=[[1               5              2],[-1           1              0],[0          -1             1]]` verify that A (B − C) = AB − AC.

बेरीज

उत्तर

LaTeX

\[Given: A\left( B - C \right) = AB - AC\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\left( \begin{bmatrix}0 & 5 & - 4 \\ - 2 & 1 & 3 \\ - 1 & 0 & 2\end{bmatrix} - \begin{bmatrix}1 & 5 & 2 \\ - 1 & 1 & 0 \\ 0 & - 1 & 1\end{bmatrix} \right) = \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}0 & 5 & - 4 \\ - 2 & 1 & 3 \\ - 1 & 0 & 2\end{bmatrix} - \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}1 & 5 & 2 \\ - 1 & 1 & 0 \\ 0 & - 1 & 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}0 - 1 & 5 - 5 & - 4 - 2 \\ - 2 + 1 & 1 - 1 & 3 - 0 \\ - 1 - 0 & 0 + 1 & 2 - 1\end{bmatrix} = \begin{bmatrix}0 - 0 + 2 & 5 + 0 - 0 & - 4 + 0 - 4 \\ 0 + 2 - 0 & 15 - 1 + 0 & - 12 - 3 + 0 \\ 0 - 2 - 1 & - 10 + 1 + 0 & 8 + 3 + 2\end{bmatrix} - \begin{bmatrix}1 - 0 - 0 & 5 + 0 + 2 & 2 + 0 - 2 \\ 3 + 1 + 0 & 15 - 1 - 0 & 6 - 0 + 0 \\ - 2 - 1 + 0 & - 10 + 1 - 1 & - 4 + 0 + 1\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & 0 & - 2 \\ 3 & - 1 & 0 \\ - 2 & 1 & 1\end{bmatrix}\begin{bmatrix}- 1 & 0 & - 6 \\ - 1 & 0 & 3 \\ - 1 & 1 & 1\end{bmatrix} = \begin{bmatrix}2 & 5 & - 8 \\ 2 & 14 & - 15 \\ - 3 & - 9 & 13\end{bmatrix} - \begin{bmatrix}1 & 7 & 0 \\ 4 & 14 & 6 \\ - 3 & - 10 & - 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}- 1 - 0 + 2 & 0 + 0 - 2 & - 6 + 0 - 2 \\ - 3 + 1 - 0 & 0 - 0 + 0 & - 18 - 3 + 0 \\ 2 - 1 - 1 & 0 + 0 + 1 & 12 + 3 + 1\end{bmatrix} = \begin{bmatrix}2 - 1 & 5 - 7 & - 8 - 0 \\ 2 - 4 & 14 - 14 & - 15 - 6 \\ - 3 + 3 & - 9 + 10 & 13 + 3\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}1 & - 2 & - 8 \\ - 2 & 0 & - 21 \\ 0 & 1 & 16\end{bmatrix} = \begin{bmatrix}1 & - 2 & - 8 \\ - 2 & 0 & - 21 \\ 0 & 1 & 16\end{bmatrix}\]
\[ \therefore LHS = RHS\]
Hence proved .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Algebra of Matrices - Exercise 5.3 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 5 Algebra of Matrices
Exercise 5.3 | Q 18 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Which of the given values of x and y make the following pair of matrices equal?

`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`


Compute the indicated product.

`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`


Compute the indicated product.

`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`


Compute the indicated product:

`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`


Show that AB ≠ BA in each of the following cases

`A=[[-1          1           0],[0          -1           1],[2                  3                4]]`  and  =B `[[1          2            3], [0          1           0],[1        1          0]]`


Compute the products AB and BA whichever exists in each of the following cases:

 [ab]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`


If A = `[[0,c,-b],[-c,0,a],[b,-a,0]]`and B =`[[a^2 ,ab,ac],[ab,b^2,bc],[ac,bc,c^2]]`, show that AB = BA = O3×3.

 

For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A = [[1     -1],[0          2]] B=   [[-1       0],[2        1]]`and `C= [[0       1],[1     -1]]`


For the following matrices verify the distributivity of matrix multiplication over matrix addition i.e. A (B + C) = AB + AC:

`A=[[2    -1],[1        1],[-1         2]]` `B=[[0     1],[1      1]]` C=`[[1      -1],[0                1]]`


If [x 4 1] `[[2       1          2],[1         0          2],[0       2 -4]]`  `[[x],[4],[-1]]` = 0, find x.

 


If A=then find λ, μ so that A2 = λA + μI

 

If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.


If , then show that A is a root of the polynomial f (x) = x3 − 6x2 + 7x + 2.

 

Find the matrix A such that    [2  1  3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`


`A=[[2,0,1],[2,1,3],[1,-1,0]]` , find A2 − 5A + 4I and hence find a matrix X such that A2 − 5A + 4I + = 0.

 

If BC are n rowed square matrices and if A = B + CBC = CBC2 = O, then show that for every n ∈ NAn+1 = Bn (B + (n + 1) C).

 

Give examples of matrices

 AB and C such that AB = AC but B ≠ CA ≠ 0.

 

If A and B are square matrices of the same order, explain, why in general

(A + B)2 ≠ A2 + 2AB + B2


If A and B are square matrices of the same order, explain, why in general

(− B)2 ≠ A2 − 2AB + B2


Let `A=[[1,1,1],[3,3,3]],B=[[3,1],[5,2],[-2,4]]` and `C=[[4,2],[-3,5],[5,0]]`Verify that AB = AC though B ≠ CA ≠ O.

 

A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000


In a parliament election, a political party hired a public relations firm to promote its candidates in three ways − telephone, house calls and letters. The cost per contact (in paisa) is given in matrix A as
\[A = \begin{bmatrix}140 \\ 200 \\ 150\end{bmatrix}\begin{array}Telephone \\ House calls \\ Letters\end{array}\]

The number of contacts of each type made in two cities X and Y is given in the matrix B as

\[\begin{array}Telephone & House calls & Letters\end{array}\]

\[B = \begin{bmatrix}1000 & 500 & 5000 \\ 3000 & 1000 & 10000\end{bmatrix}\begin{array} \\City   X \\ City Y\end{array}\]

Find the total amount spent by the party in the two cities.

What should one consider before casting his/her vote − party's promotional activity of their social activities?

 

For the matrices A and B, verify that (AB)T = BT AT, where
\[A = \begin{bmatrix}1 & 3 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}1 & 4 \\ 2 & 5\end{bmatrix}\]

If the matrix \[A = \begin{bmatrix}5 & 2 & x \\ y & z & - 3 \\ 4 & t & - 7\end{bmatrix}\]  is a symmetric matrix, find xyz and t.
 

 


If \[A = \begin{bmatrix}1 & - 1 \\ - 1 & 1\end{bmatrix}\], satisfies the matrix equation A2 = kA, write the value of k.
 

Let A = \[\begin{bmatrix}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{bmatrix}\], then An is equal to

 


If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these

 


The matrix  \[A = \begin{bmatrix}0 & 0 & 4 \\ 0 & 4 & 0 \\ 4 & 0 & 0\end{bmatrix}\] is a


If \[\begin{bmatrix}2x + y & 4x \\ 5x - 7 & 4x\end{bmatrix} = \begin{bmatrix}7 & 7y - 13 \\ y & x + 6\end{bmatrix}\] 


If A and B are square matrices of the same order, then (A + B)(A − B) is equal to 


If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.


If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.


If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn 


If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.


A square matrix where every element is unity is called an identity matrix.


Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • What is the total money (in Rupees) collected by the school DPS?

Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as

School/Article DPS CVC KVS
Handmade/fans 40 25 35
Mats 50 40 50
Plates 20 30 40

Based on the information given above, answer the following questions:

  • How many articles (in total) are sold by three schools?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×