Advertisements
Advertisements
प्रश्न
If A = `[(3, -5),(-4, 2)]`, then find A2 – 5A – 14I. Hence, obtain A3.
उत्तर
Given that: A = `[(3, -5),(-4, 2)]`
A2 = A . A
= `[(3, -5),(-4, 2)] [(3, -5),(-4, 2)]`
= `[(9 + 20, -15 - 10),(-12 - 8, 20 + 4)]`
= `[(29, -25),(-20, 24)]`
∴ A2 – 5A – 14I = `[(29, -25),(-20, -24)] -5[(3, -5),(-4, 2)] -14[(1, 0),(0, 1)]`
= `[(29, -25),(-20, 24)] - [(15, -25),(-20, 10)] - [(14, 0),(0, 14)]`
= `[(29, -25),(-20, 24)] - [(29, -25),(-20, 24)]`
= `[(29 - 29, -25 + 25),(-20 + 20, 24 - 24)]`
= `[(0, 0),(0, 0)]`
Hence, A2 – 5A – 14I = 0
Now, multiplying both sides by A, we get,
A2 . A – 5A . A – 14IA = 0A
⇒ A3 – 5A2 – 14A = 0
⇒ A3 = 5A2 + 14A
⇒ A3 = `5[(29, -25),(-20, 24)] + 14[(3, -5),(-4, -2)]`
= `[(145, -125),(-100, 120)] + [(42, -70),(-56, 28)]`
= `[(145 + 42, -125 - 70),(-100 - 56, 120 + 28)]`
= `[(187, -195),(-156, 148)]`
Hence, A3 = `[(187, -195),(-156, 148)]`
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs. 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs 2,000.
Show that AB ≠ BA in each of the following cases:
`A=[[1 3 0],[1 1 0],[4 1 0]]`And B=`[[0 1 0],[1 0 0],[0 5 1]]`
Evaluate the following:
`[[],[1 2 3],[]]` `[[1 0 2],[2 0 1],[0 1 2]]` `[[2],[4],[6]]`
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
\[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix} and \text{ I} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\]
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
If `A= [[1,2,0],[3,-4,5],[0,-1,3]]` compute A2 − 4A + 3I3.
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
`A=[[1,0,-3],[2,1,3],[0,1,1]]`then verify that A2 + A = A(A + I), where I is the identity matrix.
Let `A= [[1,1,1],[0,1,1],[0,0,1]]` Use the principle of mathematical introduction to show that `A^n [[1,n,n(n+1)//2],[0,1,1],[0,0,1]]` for every position integer n.
If B, C are n rowed square matrices and if A = B + C, BC = CB, C2 = O, then show that for every n ∈ N, An+1 = Bn (B + (n + 1) C).
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
For any square matrix write whether AAT is symmetric or skew-symmetric.
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.