Advertisements
Advertisements
प्रश्न
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
उत्तर
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
⇒[2x−9 4x] `[[x],[8]]=0`
⇒[x(2x−9)+32x]=0
`⇒[2x^2−9x+32x]=0`
`⇒[2x^2+23x]=0`
`⇒2x^2+23x=0`
⇒x(2x+23)=0
⇒x=0 or x= `-23/2`
∴x=0 or x= `-23/2`
APPEARS IN
संबंधित प्रश्न
Compute the indicated product:
`[(a,b),(-b,a)][(a,-b),(b,a)]`
Compute the indicated products:
`[[a b],[-b a]][[a -b],[b a]]`
Compute the indicated product:
`[(2,3,4),(3,4,5),(4,5,6)][(1,-3,5),(0,2,4), (3,0,5)]`
Show that AB ≠ BA in each of the following cases:
`A= [[5 -1],[6 7]]`And B =`[[2 1],[3 4]]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
If A = `[[1 1],[0 1]]` show that A2 = `[[1 2],[0 1]]` and A3 = `[[1 3],[0 1]]`
If A = `[[ab,b^2],[-a^2,-ab]]` , show that A2 = O
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
\[A = \begin{bmatrix}3 & - 2 \\ 4 & - 2\end{bmatrix} and \text{ I }= \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\], then prove that A2 − A + 2I = O.
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
If [1 1 x] `[[1 0 2],[0 2 1],[2 1 0]] [[1],[1],[1]]` = 0, find x.
If
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
\[A = \begin{bmatrix}\cos \alpha + \sin \alpha & \sqrt{2}\sin \alpha \\ - \sqrt{2}\sin \alpha & \cos \alpha - \sin \alpha\end{bmatrix}\] ,prove that
\[A^n = \begin{bmatrix}\text{cos n α} + \text{sin n α} & \sqrt{2}\text{sin n α} \\ - \sqrt{2}\text{sin n α} & \text{cos n α} - \text{sin n α} \end{bmatrix}\] for all n ∈ N.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2 B2? Give reasons.
To promote making of toilets for women, an organisation tried to generate awarness through (i) house calls, (ii) letters, and (iii) announcements. The cost for each mode per attempt is given below:
(i) ₹50 (ii) ₹20 (iii) ₹40
The number of attempts made in three villages X, Y and Z are given below:
(i) (ii) (iii)
X 400 300 100
Y 300 250 75
Z 500 400 150
Find the total cost incurred by the organisation for three villages separately, using matrices.
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
If `A= [[3],[5],[2]]` And B=[1 0 4] , Verify that `(AB)^T=B^TA^T`
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If `A=[[-2],[4],[5]]` , B = [1 3 −6], verify that (AB)T = BT AT
If A is an m × n matrix and B is n × p matrix does AB exist? If yes, write its order.
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If A is a matrix of order 3 × 4 and B is a matrix of order 4 × 3, find the order of the matrix of AB.
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If A is a square matrix such that A2 = I, then (A − I)3 + (A + I)3 − 7A is equal to
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
Give an example of matrices A, B and C such that AB = AC, where A is nonzero matrix, but B ≠ C.
Show that if A and B are square matrices such that AB = BA, then (A + B)2 = A2 + 2AB + B2.
If AB = BA for any two square matrices, prove by mathematical induction that (AB)n = AnBn
If A = `[(0, 1),(1, 0)]`, then A2 is equal to ______.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3