Advertisements
Advertisements
प्रश्न
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
उत्तर
`AB = [[1 3 -1],[2 -1 -1],[3 0 -1]]`` [[-2 3 -1],[-1 2 -1],[-6 9 -4]]`
`⇒ AB = [[-2-3+ 6 3+6-9 -1-3+4],[-4+1+6 6-2-9 -2+1+4],[-6-0+6 9+0-9 -3-0+4]]`
`⇒AB=[[1 0 0],[3 -5 3],[0 0 1]]`..........................(1)
Also,
`BA=`` [[-2 3 -1],[-1 2 -1],[-6 9 -4]]``[[1 3 -1],[2 -1 -1],[3 0 -1]]`
`⇒BA=[[-2+6-3 -6-3+0 2-3+1],[-1+4-3 -3-2+0 1-2+1],[-6+18-12 -18-9+0 6-9+4]]`
`⇒BA=[[1 -9 0],[0 -5 0],[0 -27 1]]` ...(2)
∴ AB ≠ BA (From eqs. (1) and (2))
APPEARS IN
संबंधित प्रश्न
Compute the indicated product.
`[(1),(2),(3)] [2,3,4]`
Compute the indicated product.
`[(1, -2),(2,3)][(1,2,3),(2,3,1)]`
Compute the indicated product.
`[(3,-1,3),(-1,0,2)][(2,-3),(1,0),(3,1)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Compute the products AB and BA whichever exists in each of the following cases:
`A= [[1 -2],[2 3]]` and B=`[[1 2 3],[2 3 1]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
For the following matrices verify the associativity of matrix multiplication i.e. (AB) C = A(BC):
`A=[[4 2 3],[1 1 2],[3 0 1]]`=`B=[[1 -1 1],[0 1 2],[2 -1 1]]` and `C= [[1 2 -1],[3 0 1],[0 0 1]]`
Compute the elements a43 and a22 of the matrix:`A=[[0 1 0],[2 0 2],[0 3 2],[4 0 4]]` `[[2 -1],[-3 2],[4 3]] [[0 1 -1 2 -2],[3 -3 4 -4 0]]`
\[A = \begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\] , Show that A2 = A.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
Show that the matrix \[A = \begin{bmatrix}5 & 3 \\ 12 & 7\end{bmatrix}\] is root of the equation A2 − 12A − I = O
If `[[2 3],[5 7]] [[1 -3],[-2 4]]-[[-4 6],[-9 x]]` find x.
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
`A=[[1,2,2],[2,1,2],[2,2,1]]`, then prove that A2 − 4A − 5I = 0
Find the matrix A such that `=[[1,2,3],[4,5,6]]=[[-7,-8,-9],[2,4,6],[11,10,9]]`
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
Three shopkeepers A, B and C go to a store to buy stationary. A purchases 12 dozen notebooks, 5 dozen pens and 6 dozen pencils. B purchases 10 dozen notebooks, 6 dozen pens and 7 dozen pencils. C purchases 11 dozen notebooks, 13 dozen pens and 8 dozen pencils. A notebook costs 40 paise, a pen costs Rs. 1.25 and a pencil costs 35 paise. Use matrix multiplication to calculate each individual's bill.
In a legislative assembly election, a political group hired a public relations firm to promote its candidates in three ways: telephone, house calls and letters. The cost per contact (in paise) is given matrix A as
Cost per contact
`A=[[40],[100],[50]]` `[["Teliphone"] ,["House call "],[" letter"]]`
The number of contacts of each type made in two cities X and Y is given in matrix B as
Telephone House call Letter
`B= [[ 1000, 500, 5000],[3000,1000, 10000 ]]`
Find the total amount spent by the group in the two cities X and Y.
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
A trust invested some money in two type of bonds. The first bond pays 10% interest and second bond pays 12% interest. The trust received ₹ 2800 as interest. However, if trust had interchanged money in bonds, they would have got ₹ 100 less as interes. Using matrix method, find the amount invested by the trust.
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(2A)T = 2AT
If \[A = \begin{bmatrix}\cos x & - \sin x \\ \sin x & \cos x\end{bmatrix}\] , find AAT
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If A = [aij] is a square matrix such that aij = i2 − j2, then write whether A is symmetric or skew-symmetric.
If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?
What is the total number of 2 × 2 matrices with each entry 0 or 1?
Construct a 2 × 2 matrix A = [aij] whose elements aij are given by \[a_{ij} = \begin{cases}\frac{\left| - 3i + j \right|}{2} & , if i \neq j \\ \left( i + j \right)^2 & , if i = j\end{cases}\]
If S = [Sij] is a scalar matrix such that sij = k and A is a square matrix of the same order, then AS = SA = ?
If \[A = \begin{bmatrix}2 & - 1 & 3 \\ - 4 & 5 & 1\end{bmatrix}\text{ and B }= \begin{bmatrix}2 & 3 \\ 4 & - 2 \\ 1 & 5\end{bmatrix}\] then
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?
A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of Rs. 1,800.