Advertisements
Advertisements
प्रश्न
If `A=[[1,1],[0,1]] ,` Prove that `A=[[1,n],[0,1]]` for all positive integers n.
उत्तर
We shall prove the result by the principle of mathematical induction on n.
Step 1: If n = 1, by definition of integral powers of matrix, we have
\[\]
Step 2: Let the result be true for n = m. Then,
\[A^{m + 1} = A^m A\]
= \begin{bmatrix}1 & m \\ 0 & 1\end{bmatrix}\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}
= \begin{bmatrix}1 + 0 & 1 + m \\ 0 + 0 & 0 + 1\end{bmatrix}
= \begin{bmatrix}1 & 1 + m \\ 0 & 1\end{bmatrix}
Hence, by the principle of mathematical induction, the result is valid for any positive integer n.
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the indicated products:
`[[1 -2],[2 3]][[1 2 3],[-3 2 -1]]`
Show that AB ≠ BA in each of the following cases
`A=[[-1 1 0],[0 -1 1],[2 3 4]]` and =B `[[1 2 3], [0 1 0],[1 1 0]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
Show that AB ≠ BA in each of the following cases:
`A = [[1,3,-1],[2,-1,-1],[3,0,-1]]` And `B= [[-2,3,-1],[-1,2,-1],[-6,9,-4]]`
If A = `[[2 -1],[3 2]]` and B = `[[0 4],[-1 7]]`find 3A2 − 2B + I
Let A =`[[-1 1 -1],[3 -3 3],[5 5 5]]`and B =`[[0 4 3],[1 -3 -3],[-1 4 4]]`
, compute A2 − B2.
If \[A = \begin{bmatrix}3 & - 5 \\ - 4 & 2\end{bmatrix}\] , find A2 − 5A − 14I.
Solve the matrix equations:
[2x 3] `[[1 2],[-3 0]] , [[x],[8]]=0`
`A=[[3,2, 0],[1,4,0],[0,0,5]]` show that A2 − 7A + 10I3 = 0
Find the matrix A such that [2 1 3 ] `[[-1,0,-1],[-1,1,0],[0,1,1]] [[1],[0],[-1]]=A`
If `A=[[0,-x],[x,0]],[[0,1],[1,0]]` and `x^2=-1,` then show that `(A+B)^2=A^2+B^2`
Give examples of matrices
A and B such that AB = O but A ≠ 0, B ≠ 0.
Give examples of matrices
A and B such that AB = O but BA ≠ O.
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves ₹ 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?
Let `A= [[1,-1,0],[2,1,3],[1,2,1]]` And `B=[[1,2,3],[2,1,3],[0,1,1]]` Find `A^T,B^T` and verify that (2A)T = 2AT.
If \[A = \begin{bmatrix}1 & 1 \\ 1 & 1\end{bmatrix}\] satisfies A4 = λA, then write the value of λ.
If A is 2 × 3 matrix and B is a matrix such that AT B and BAT both are defined, then what is the order of B ?
For a 2 × 2 matrix A = [aij] whose elements are given by
The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
The number of possible matrices of order 3 × 3 with each entry 2 or 0 is
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
If A = `[[3,9,0] ,[1,8,-2], [7,5,4]]` and B =`[[4,0,2],[7,1,4],[2,2,6]]` , then find the matrix `B'A'` .
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find A matrix Z such that X + Y + Z is a zero matrix
If A = `[(3, 5)]`, B = `[(7, 3)]`, then find a non-zero matrix C such that AC = BC.
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
A square matrix where every element is unity is called an identity matrix.
If A = `[(-3, -2, -4),(2, 1, 2),(2, 1, 3)]`, B = `[(1, 2, 0),(-2, -1, -2),(0, -1, 1)]` then find AB and use it to solve the following system of equations:
x – 2y = 3
2x – y – z = 2
–2y + z = 3