Advertisements
Advertisements
प्रश्न
If \[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] ,find adj·A and verify that A(adj·A) = (adj·A)A = |A| I3.
उत्तर
Consider the matrix,
\[A = \begin{pmatrix}\cos\alpha & - \sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix},\] \[\text { adj }\left( A \right) = C^T\] Where, C is cofactor matrix.
\[C = \begin{pmatrix}\cos \alpha & - \sin\alpha & 0 \\ \sin \alpha & \cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}, \]
\[\text { Adj }\left( A \right) = C^T = \begin{pmatrix}cos\alpha & sin\alpha & 0 \\ - sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\]
Now,
\[A . \text { Adj }\left( A \right) = \begin{pmatrix}cos\alpha & - sin\alpha & 0 \\ sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}cos\alpha & sin\alpha & 0 \\ - sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\]
\[ = \begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix} . . . . . (1)\]
\[\text { Adj }\left( A \right) . A = \begin{pmatrix}cos\alpha & sin\alpha & 0 \\ - sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\begin{pmatrix}cos\alpha & - sin\alpha & 0 \\ sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{pmatrix}\]
\[ = \begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{pmatrix} . . . . . (2)\]
\[\left| A \right| = \begin{vmatrix}cos\alpha & - sin\alpha & 0 \\ sin\alpha & cos\alpha & 0 \\ 0 & 0 & 1\end{vmatrix}\]
\[ = cos\alpha\left( cos\alpha - 0 \right) + sin\alpha\left( sin\alpha - 0 \right) + 0\]
\[ = 1 . . . . . (3)\]
APPEARS IN
संबंधित प्रश्न
Which of the given values of x and y make the following pair of matrices equal?
`[(3x+7, 5),(y+1, 2-3x)] = [(0,y-2),(8,4)]`
Compute the products AB and BA whichever exists in each of the following cases:
A = [1 −1 2 3] and B=`[[0],[1],[3],[2]]`
Compute the products AB and BA whichever exists in each of the following cases:
[a, b]`[[c],[d]]`+ [a, b, c, d] `[[a],[b],[c],[d]]`
If A = `[[ cos 2θ sin 2θ],[ -sin 2θ cos 2θ]]`, find A2.
If A =
\[\begin{bmatrix}2 & - 3 & - 5 \\ - 1 & 4 & 5 \\ 1 & - 3 & - 4\end{bmatrix}\]and B =
\[\begin{bmatrix}- 1 & 3 & 5 \\ 1 & - 3 & - 5 \\ - 1 & 3 & 5\end{bmatrix}\] , show that AB = BA = O3×3.
If \[A = \begin{bmatrix}4 & - 1 & - 4 \\ 3 & 0 & - 4 \\ 3 & - 1 & - 3\end{bmatrix}\] , Show that A2 = I3.
If A=, find k such that A2 = kA − 2I2
If\[A = \begin{bmatrix}1 & 2 \\ 2 & 1\end{bmatrix}\] f (x) = x2 − 2x − 3, show that f (A) = 0
Find the matrix A such that `[[2,-1],[1,0],[-3,-4]]A` `=[[-1,-8,-10],[1,-2,-5],[9,22,15]]`
Give examples of matrices
A, B and C such that AB = AC but B ≠ C, A ≠ 0.
Let A and B be square matrices of the same order. Does (A + B)2 = A2 + 2AB + B2 hold? If not, why?
A trust fund has Rs 30000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30000 among the two types of bonds. If the trust fund must obtain an annual total interest of(ii) Rs 2000
Let `A =[[2,-3],[-7,5]]` And `B=[[1,0],[2,-4]]` verify that
(A + B)T = AT + BT
Write the number of all possible matrices of order 2 × 2 with each entry 1, 2 or 3.
If `[2 1 3]([-1,0,-1],[-1,1,0],[0,1,1])([1],[0],[-1])=A` , then write the order of matrix A.
If \[A = \begin{bmatrix}1 & - 1 \\ 2 & - 1\end{bmatrix}, B = \begin{bmatrix}a & 1 \\ b & - 1\end{bmatrix}\]and (A + B)2 = A2 + B2, values of a and b are
If \[A = \begin{bmatrix}\alpha & \beta \\ \gamma & - \alpha\end{bmatrix}\] is such that A2 = I, then
If A = [aij] is a scalar matrix of order n × n such that aii = k, for all i, then trace of A is equal to
(a) nk (b) n + k (c) \[\frac{n}{k}\] (d) none of these
The number of possible matrices of order 3 × 3 with each entry 2 or 0 is
If A and B are square matrices of the same order, then (A + B)(A − B) is equal to
If X = `[(3, 1, -1),(5, -2, -3)]` and Y = `[(2, 1, -1),(7, 2, 4)]`, find X + Y
Let A and B be square matrices of the order 3 × 3. Is (AB)2 = A2B2? Give reasons.
The matrix P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]`is a ______.
If A and B are square matrices of the same order, then [k (A – B)]′ = ______.
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- What is the total amount of money collected by all three schools DPS, CVC, and KVS?
Three schools DPS, CVC, and KVS decided to organize a fair for collecting money for helping the flood victims. They sold handmade fans, mats, and plates from recycled material at a cost of Rs. 25, Rs.100, and Rs. 50 each respectively. The numbers of articles sold are given as
School/Article | DPS | CVC | KVS |
Handmade/fans | 40 | 25 | 35 |
Mats | 50 | 40 | 50 |
Plates | 20 | 30 | 40 |
Based on the information given above, answer the following questions:
- If the number of handmade fans and plates are interchanged for all the schools, then what is the total money collected by all schools?
If A = `[(1, 1, 1),(0, 1, 1),(0, 0, 1)]` and M = A + A2 + A3 + .... + A20, then the sum of all the elements of the matrix M is equal to ______.