Advertisements
Advertisements
प्रश्न
If \[a, b\] and c are all non-zero and
उत्तर
We have,
\[C_1 \to C_1 - C_2 \]
\[\begin{vmatrix}a & 1 & 1 \\ - b & 1 + b & 1 \\ 0 & 1 & 1 + c\end{vmatrix} = 0\]
\[ C_2 \to C_2 - C_3 \]
\[\begin{vmatrix}a & 0 & 1 \\ - b & b & 1 \\ 0 & - c & 1 + c\end{vmatrix} = 0\]
\[\text{ Expanding along }R_1 , \text{ we get }\]
\[a(b + bc + c) + 1(bc) = 0\]
\[ \Rightarrow ab + abc + ac + bc = 0\]
\[\text{ Dividing by abc, we get }\]
\[\frac{1}{c} + 1 + \frac{1}{b} + \frac{1}{a} = 0\]
\[ \therefore \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 = 0\]
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Show that
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
Prove that :
Prove that :
Prove that :
Prove that :
Given: x + 2y = 1
3x + y = 4
3x − y + 2z = 3
2x + y + 3z = 5
x − 2y − z = 1
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
The value of the determinant
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.