मराठी

Prove that : ∣ ∣ ∣ ∣ ∣ 1 B + C B 2 + C 2 1 C + a C 2 + a 2 1 a + B a 2 + B 2 ∣ ∣ ∣ ∣ ∣ = ( a − B ) ( B − C ) ( C − a ) - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 

उत्तर

\[\text{ Let LHS }= ∆ = \begin{vmatrix} 1 & b + c & b^2 + c^2 \\1 & c + a & c^2 + a^2 \\1 & a + b & a^2 + b^2 \end{vmatrix}\]

\[ \Rightarrow ∆ = \begin{vmatrix} 0 & ( b + c ) - ( c + a ) & ( b^2 + c^2 ) - ( c^2 + a^2 \\0 &( c + a ) - ( a + b ) & ( c^2 + a^2 ) - ( a^2 + b^2 \\1 & a + b & a^2 + b^2 \end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_2 \to R_2 - R_3 \right] \] 
\[ = \begin{vmatrix} 0 & b - a & b^2 - a^2 \\0 & c - b & c^2 - b^2 \\1 & a + b & a^2 + b^2 \end{vmatrix}\] 
\[ = \left( - 1 \right)^2 \begin{vmatrix} 0 & a - b & a^2 - b^2 \\0 & b - c & b^2 - c^2 \\1 & a + b & a^2 + b^2 \end{vmatrix} \left[\text{ Taking out }\left( - 1 \right)\text{ common from }R_1 \text{ and }R_2 \right]\] 
\[ = \left( a - b \right)\left( b - c \right) \begin{vmatrix} 0 & 1 & a + b\\0 & 1 & b + c\\1 & a + b & a^2 + b^2 \end{vmatrix}\] 
\[ = \left( a - b \right)\left( b - c \right)\left\{ 1 \times \begin{vmatrix} 1 & a + b\\1 & b + c \end{vmatrix} \right\} \left[\text{ Expanding along }C_1 \right]\] 
\[ = \left( a - b \right)\left( b - c \right)\left( c - a \right)\] 
\[ = RHS\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.2 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.2 | Q 16 | पृष्ठ ५९

संबंधित प्रश्‍न

Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`


Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Solve system of linear equations, using matrix method.

4x – 3y = 3

3x – 5y = 7


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]


Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Using determinants prove that the points (ab), (a', b') and (a − a', b − b') are collinear if ab' = a'b.

 

Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


2x − y = − 2
3x + 4y = 3


3x + ay = 4
2x + ay = 2, a ≠ 0


9x + 5y = 10
3y − 2x = 8


An automobile company uses three types of steel S1S2 and S3 for producing three types of cars C1C2and C3. Steel requirements (in tons) for each type of cars are given below : 

  Cars
C1
C2 C3
Steel S1 2 3 4
S2 1 1 2
S3 3 2 1

Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


Write the value of  \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

If \[A = \begin{bmatrix}3 & - 4 & 2 \\ 2 & 3 & 5 \\ 1 & 0 & 1\end{bmatrix}\] , find A−1 and hence solve the following system of equations: 

Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

 

The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×