Advertisements
Advertisements
प्रश्न
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
उत्तर
Let the award money given for sincerity, truthfulness and helpfulness be ₹x, ₹y and ₹z respectively.
Since, the total cash award is ₹900.
∴ x + y + z = 900 ....(1)
Award money given by school A is ₹1,600.
∴ 3x + 2y + z = 1600 ....(2)
Award money given by school B is ₹2,300.
∴ 4x + y + 3z = 2300 ....(3)
The above system of equations can be written in matrix form CX = D as
\[\begin{bmatrix}1 & 1 & 1 \\ 3 & 2 & 1 \\ 4 & 1 & 3\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}900 \\ 1600 \\ 2300\end{bmatrix}\]
\[\text{ Where,} C = \begin{bmatrix}1 & 1 & 1 \\ 3 & 2 & 1 \\ 4 & 1 & 3\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }D = \begin{bmatrix}900 \\ 1600 \\ 2300\end{bmatrix}\]
Now,
\[\left| C \right| = \begin{vmatrix}1 & 1 & 1 \\ 3 & 2 & 1 \\ 4 & 1 & 3\end{vmatrix}\]
\[ = 1\left( 6 - 1 \right) - 1\left( 9 - 4 \right) + 1(3 - 8)\]
\[ = 5 - 5 - 5\]
\[ = - 5\]
\[\text{ Let }C_{ij}\text{ be the cofactors of elements }c_{ij}\text{ in }C = \left[ c_{ij} \right] . \text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}2 & 1 \\ 1 & 3\end{vmatrix} = 5, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & 1 \\ 4 & 3\end{vmatrix} = - 5, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix} = - 5\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ 1 & 3\end{vmatrix} = - 2 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ 4 & 3\end{vmatrix} = - 1 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ 4 & 1\end{vmatrix} = 3\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ 2 & 1\end{vmatrix} = - 1, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 3 & 1\end{vmatrix} = 2, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 3 & 2\end{vmatrix} = - 1\]
\[adj C = \begin{bmatrix}5 & - 5 & - 5 \\ - 2 & - 1 & 3 \\ - 1 & 2 & - 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}5 & - 2 & - 1 \\ - 5 & - 1 & 2 \\ - 5 & 3 & - 1\end{bmatrix}\]
\[ \Rightarrow C^{- 1} = \frac{1}{\left| C \right|}adj C\]
\[ = \frac{1}{- 5}\begin{bmatrix}5 & - 2 & - 1 \\ - 5 & - 1 & 2 \\ - 5 & 3 & - 1\end{bmatrix}\]
\[X = C^{- 1} D\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{5}\begin{bmatrix}5 & - 2 & - 1 \\ - 5 & - 1 & 2 \\ - 5 & 3 & - 1\end{bmatrix}\begin{bmatrix}900 \\ 1600 \\ 2300\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{5}\begin{bmatrix}4500 - 3200 - 2300 \\ - 4500 - 1600 + 4600 \\ - 4500 + 4800 - 2300\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = - \frac{1}{5}\begin{bmatrix}- 1000 \\ - 1500 \\ - 2000\end{bmatrix}\]
\[ \Rightarrow x = \frac{- 1000}{- 5}, y = \frac{- 1500}{- 5}\text{ and }z = \frac{- 2000}{- 5}\]
\[ \therefore x = 200, y = 300\text{ and }z = 400 .\]
Hence, the award money for each value of sincerity, truthfulness and helpfulness is ₹200, ₹300 and ₹400.
One more value which should be considered for award hardwork.
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 5 \\ 2 & 6 & 10 \\ 31 & 11 & 38\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Solve the following determinant equation:
If \[a, b\] and c are all non-zero and
Prove that :
Prove that :
Prove that :
Prove that :
Prove that
2x + 3y = 10
x + 6y = 4
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and }B = \begin{bmatrix}1 & 0 \\ - 1 & 0\end{bmatrix}\] , find |AB|.
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
The value of the determinant
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.