Advertisements
Advertisements
प्रश्न
The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.
उत्तर
Let the price of onion be Rs per kg = x
The price of wheat is Rs per kg = y
The price of rice be Rs per kg = z
Then according to the given conditions,
4x + 3y + 2z = 60;
2x + 4y + 6z = 90;
6x + 2y + 3z = 70
This system of equations can be written as AX = B.
`[(4,3,2),(2,4,6),(6,2,3)] [(x),(y),(z)] = [(60),(90),(70)]`
A = `[(4,3,2),(2,4,6),(6,2,3)], X = [(x),(y),(z)], B = [(60),(90),(70)]`
`abs A = [(4,3,2),(2,4,6),(6,2,3)]`
`= 4(12 - 12) - 3(2 xx 3 - 6 xx 6) + 2 (2 xx 2 - 6 xx 4)`
`= 0 + 90 - 40 = 50 ne 0`
`therefore A^-1` can be found
Cofactors of the elements of `abs A`
`A_11 = 0, A_12 = 30, A_13 = - 20`
`A_21 = - 5, A_22 = 0, A_23 = 10`
`A_31 = 10, A_32 = - 20, A_33 = 10`
`therefore adj A = [(0,30,-20),(-5,0,10),(10,-20,10)] = [(0,-5,10),(30,0,-20),(-20,10,10)]`
`A^-1 = adj A/abs A = 1/50 [(0,-5,10),(30,0,-20),(-20,10,10)]`
AX = B ⇒ X = A-1 B
`therefore [(x),(y),(z)] = 1/50 [(0,-5,10),(30,0,-20),(-20,10,10)] [(60),(90),(70)]`
`= 1/50 [(0 - 450 + 700),(1800 + 0 - 1400),(-1200 + 900 + 700)]`
`= 1/50 [(250),(400),(400)] = [(5),(8),(8)]`
⇒ x = 5, y = 8, z = 8
Hence, the cost of 1 kg onion = Rs 5
Price of 1 kg wheat = Rs 8
Price of 1 kg rice = Rs 8
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Prove that :
Prove that :
2x − y = − 2
3x + 4y = 3
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Write the value of \[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix} .\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , write the value of x.
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
Solve the following system of equations by matrix method:
5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Solve the following system of equations by matrix method:
If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.
Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.