मराठी

Let a = ⎡ ⎢ ⎣ 1 Sin θ 1 − Sin θ 1 Sin θ − 1 − Sin θ 1 ⎤ ⎥ ⎦ , Where 0 ≤ θ ≤ 2 π . Then, (A) D E T ( a ) = 0 (B) D E T ( a ) ∈ ( 2 , ∞ ) (C) D E T ( a ) ∈ ( 2 , 4 ) (D) - Mathematics

Advertisements
Advertisements

प्रश्न

Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]



पर्याय

  • \[Det \left( A \right) = 0\]

  • \[Det \left( A \right) \in \left( 2, \infty \right)\]

  • \[Det \left( A \right) \in \left( 2, 4 \right)\]

  • \[Det \left( A \right) \in \left[ 2, 4 \right]\]

MCQ

उत्तर

 \[\text{ Det }\left( A \right) \in \left[ 2, 4 \right]\]

\[\begin{vmatrix} 1 &\sin \theta & 1\\ - \sin \theta & 1 &\sin \theta\\ - 1 & - \sin \theta & 1 \end{vmatrix}\]
\[ = \begin{vmatrix} 1 & \sin \theta & 2\\ - \sin \theta & 1 & 0 \\- 1 & - \sin \theta & 0 \end{vmatrix} \left[\text{ Applying }C_3 \to C_3 + C_1 \right]\]
\[ = 2 \times \begin{vmatrix} - \sin \theta & 1 \\ - 1 & - \sin \theta \end{vmatrix} \left[\text{ Expanding along }C_3 \right]\]

\[ = 2 \left( \sin^2 \theta + 1 \right)\]

\[\text{ Given: }0 \leq \theta \leq 2\pi \]

\[ \Rightarrow - 1 \leq \sin \theta \leq 1\]

\[ \Rightarrow 0 \leq \sin^2 \theta \leq 1\]

\[\left| A \right| = 2\left( \sin^2 \theta + 1 \right)\]

\[\left| A \right| = 2 \times 1 = 2 \left[ \theta = 0 \right]\]

\[ = 2 \times 2 = 4 \left[ \theta = 2\pi \right]\]

\[ \Rightarrow Det \left( A \right) \in \left[ 2, 4 \right] \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Determinants - Exercise 6.7 [पृष्ठ ९५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 6 Determinants
Exercise 6.7 | Q 21 | पृष्ठ ९५

संबंधित प्रश्‍न

Examine the consistency of the system of equations.

5x − y + 4z = 5

2x + 3y + 5z = 2

5x − 2y + 6z = −1


Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2


Evaluate

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]


For what value of x the matrix A is singular? 
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]


Prove that:

`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`


Prove the following identities:

\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]


Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


Prove that :

\[\begin{vmatrix}a + b + 2c & a & b \\ c & b + c + 2a & b \\ c & a & c + a + 2b\end{vmatrix} = 2 \left( a + b + c \right)^3\]

 


Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

3x + ay = 4
2x + ay = 2, a ≠ 0


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


x + 2y = 5
3x + 6y = 15


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]


For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]





Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.


2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

x + y = 1
x + z = − 6
x − y − 2z = 3


The value of x, y, z for the following system of equations x + y + z = 6, x − y+ 2z = 5, 2x + y − z = 1 are ______


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×