Advertisements
Advertisements
प्रश्न
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
उत्तर
\[Let A = \begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix} = 2 \left( 204 - 100 \right) - 3 \left( 156 - 75 \right) + 7 \left( 260 - 255 \right)\]
\[ \Rightarrow A = 2\left( 104 \right) - 3\left( 81 \right) + 7\left( 5 \right)\]
\[ \Rightarrow A = 208 - 243 + 35\]
\[ \Rightarrow A = 243 - 243 = 0\]
\[\]
\[ \therefore \begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix} = 0\]
\[\]
\[ \Rightarrow \begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 = 0^2 = 0 \left[ \because \det A^2 = \left( \det A \right)^2 \right]\]
\[\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Find the value of x, if
\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
2x − y = 1
7x − 2y = −7
Prove that :
Prove that :
Prove that :
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If A is a singular matrix, then write the value of |A|.
For what value of x, the following matrix is singular?
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
The maximum value of \[∆ = \begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin\theta & 1 \\ 1 + \cos\theta & 1 & 1\end{vmatrix}\] is (θ is real)
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
System of equations x + y = 2, 2x + 2y = 3 has ______
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.