Advertisements
Advertisements
प्रश्न
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
उत्तर
Let, A `= [(1,3),(2,6)], X = [(x),(y)], B = [(5),(8)]`
Then the given system of equations can be written as,
`[(1,3),(2,6)][(x),(y)] = [(5),(8)]`
Now, `abs A = [(1,3),(2,6)] = 1 xx 6 - 2 xx 3 = 0`
cofactors of the elements of `abs A` are respectively
`A_11 = 6, A_12 = -2, A_21 = -3, A_22 = 1`
`therefore adj A = [(6,-2),(-3,1)] = [(6,-3),(-2,1)]`
`=> (adj A) B = [(6,-3),(-2,1)] [(5),(8)] = [(30 - 24),(-10 + 8)] = [(6),(-2)] ne 0`
`abs A = 0 और (adj A) "B" ne 0`
Therefore, the given system of equations is inconsistent.
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Prove the following identity:
`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
Prove that :
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
If A is a singular matrix, then write the value of |A|.
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\] is equal to
If \[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & - 2 \\ 7 & 3\end{vmatrix}\] , then x =
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.