Advertisements
Advertisements
प्रश्न
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
उत्तर
Matrix form of the given system of equations is,
`[(1, 1, 1),(1, -1, 1),(1, 1, -1)] [(x),(y),(z)] = [(-1),(2),(3)]`
This is of the form AX = B,
where, A = `[(1, 1, 1),(1, -1, 1),(1, 1, -1)], "X" = [(x),(y),(z)], "B" = [(-1),(2),(3)]`
Pre-multiplying AX = B by A−1, we get
A−1(AX) = A−1B
∴ (A−1A)X = A−1B
∴ IX = A−1B
∴ X = A−1B .......(i)
To determine X, we have to find A−1
|A| = `|(1, 1, 1),(1, -1, 1),(1, 1, -1)|`
= 1(1 − 1) − 1(−1 − 1) + 1(1 + 1)
= 2 + 2
= 4 ≠ 0
∴ A−1 exists.
A11 = (−1)1+1 M11 = `|(-1, 1),(1, -1)|` = 1 − 1 = 0
A12 = (−1)1+2 M12 = `-|(1, 1),(1, -1)|` = −(−1 − 1) = 2
A13 = (−1)1+3 M13 = `|(1, 1),(1, -1)|` = 1 + 1 = 2
A21 = (−1)2+1 M21 = `-|(1, 1),(1, -1)|` = − (−1 − 1) = 2
A22 = (−1)2+2 M22 = `|(1, 1),(1, -1)|` = −1 − 1 = −2
A23 = (−1)2+3 M23 = `-|(1, 1),(1, 1)|` = − (1 − 1) = 0
A31 = (−1)3+1 M31 = `|(1, 1),(-1, 1)|` = 1 + 1 = 2
A32 = (−1)3+2 M32 = `-|(1, 1),(1, 1)|` = −(1 − 1) = 0
A33 = (−1)3+3 M33 = `|(1, 1),(1, -1)|` = −1 − 1 = −2
Hence, the matrix of cofactors is
`|("A"_11, "A"_12, "A"_13),("A"_21, "A"_22, "A"_23),("A"_31, "A"_32, "A"_33)| = [(0, 2, 2),(2, -2, 0),(2, 0, -2)]`
∴ adj A = `[(0, 2, 2),(2, -2, 0),(2, 0, -2)]`
= `2[(0, 1, 1),(1, -1, 0),(1, 0, -1)]`
∴ A−1 = `1/|"A"|` (adj A)
= `1/4 xx 2[(0, 1, 1),(1, -1, 0),(1, 0, -1)]`
∴ A−1 = `1/2[(0, 1, 1),(1, -1, 0),(1, 0, -1)]`
∴ X = `1/2[(0, 1, 1),(1, -1, 0),(1, 0, -1)] [(-1),(2),(3)]` .......[From (i)]
= `1/2[(5),(-3),(-4)]`
∴ `[(x),(y),(z)] = [(5/2),(-3/2),(-2)]`
By equality of matrices, we get
x = `5/2`, y = `-3/2`, z = −2
APPEARS IN
संबंधित प्रश्न
If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Show that x = 2 is a root of the equation
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
Using determinants show that the following points are collinear:
(1, −1), (2, 1) and (4, 5)
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.
3x + ay = 4
2x + ay = 2, a ≠ 0
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
The value of \[\begin{vmatrix}5^2 & 5^3 & 5^4 \\ 5^3 & 5^4 & 5^5 \\ 5^4 & 5^5 & 5^6\end{vmatrix}\]
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
2x + 6y = 2
3x − z = −8
2x − y + z = −3
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
If A = `[[1,1,1],[0,1,3],[1,-2,1]]` , find A-1Hence, solve the system of equations:
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.
Using the matrix method, solve the following system of linear equations:
`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.