मराठी

A Total Amount of ₹7000 is Deposited in Three Different Saving Bank Accounts with Annual Interest Rates 5%, 8% and - Mathematics

Advertisements
Advertisements

प्रश्न

A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and \[8\frac{1}{2}\] % respectively. The total annual interest from these three accounts is ₹550. Equal amounts have been deposited in the 5% and 8% saving accounts. Find the amount deposited in each of the three accounts, with the help of matrices.

उत्तर

​​​Let the amount deposited in each of the three accounts be ₹ x, ₹ x and ₹ y respectively. 

Since, the total amount deposited is ₹7,000.
∴ x + x + y = 7000
⇒ 2x + y = 7000                      ....(1)

Total annual Interest is ₹550.
∴ \[\frac{5}{100}x + \frac{8}{100}x + \frac{17}{200}y = 550\]

\[\Rightarrow 26x + 17y = 110000\]                ....(2)

The above system of equations can be written in matrix form AX = B as \[\begin{bmatrix}2 & 1 \\ 26 & 17\end{bmatrix}\binom{x}{y} = \binom{7000}{110000}\]
\[\text{ where,} A = \begin{bmatrix}2 & 1 \\ 26 & 17\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{7000}{110000}\]
Now,
\[\left| A \right| = \begin{vmatrix}2 & 1 \\ 26 & 17\end{vmatrix}\]
\[ = 34 - 26\]
\[ = 8\]
\[\text{ Let }C_{ij}\text{ be the cofactors of elements }a_{ij}\text{ in }A = \left[ a_{ij} \right] .\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} 17 = 17, C_{12} = \left( - 1 \right)^{1 + 2} 26 = - 26\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} 1 = - 1 , C_{22} = \left( - 1 \right)^{2 + 2} 2 = 2\]
\[adj A = \begin{bmatrix}17 & - 26 \\ - 1 & 2\end{bmatrix}^T \]
\[ = \begin{bmatrix}17 & - 1 \\ - 26 & 2\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{8}\begin{bmatrix}17 & - 1 \\ - 26 & 2\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{8}\begin{bmatrix}17 & - 1 \\ - 26 & 2\end{bmatrix}\binom{7000}{110000}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{8}\binom{119000 - 110000}{ - 182000 + 220000}\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{8}\binom{9000}{38000}\]
\[ \Rightarrow x = \frac{9000}{8}\text{ and }y = \frac{38000}{8}\]
\[ \therefore x = 1125\text{ and }y = 4750 .\]

Hence, the amount deposited in each of the three accounts is ₹1125, ₹1125 and ₹4750.

 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 20 | पृष्ठ १८

संबंधित प्रश्‍न

If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


Evaluate the following determinant:

\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


Show that x = 2 is a root of the equation

\[\begin{vmatrix}x & - 6 & - 1 \\ 2 & - 3x & x - 3 \\ - 3 & 2x & x + 2\end{vmatrix} = 0\]  and solve it completely.
 

 


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Prove that :

\[\begin{vmatrix}a^2 & a^2 - \left( b - c \right)^2 & bc \\ b^2 & b^2 - \left( c - a \right)^2 & ca \\ c^2 & c^2 - \left( a - b \right)^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]

Given: x + 2y = 1
            3x + y = 4


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


2y − 3z = 0
x + 3y = − 4
3x + 4y = 3


2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


If A is a singular matrix, then write the value of |A|.

 

If \[A = \left[ a_{ij} \right]\]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is


Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to

 


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

System of equations x + y = 2, 2x + 2y = 3 has ______


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is


Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.


Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×