Advertisements
Advertisements
प्रश्न
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.
पर्याय
35
36
37
38
उत्तर
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to 36.
Explanation:
Given that P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]`
A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]`; ω = `(-1 + isqrt(3))/2`
Let M = (P–1AP – I3)2
⇒ M = (P–1AP)2 + (I3)2 – 2(P–1AP)(I3)
M = (P–1AP)2P + I3 – 2(P–1AP)
M = P–1A2P + I3 – 2P–1AP
PM = A2P + PI3 – 2AP
⇒ PM = (A2 + I3 – 2A)P
PM = (A2 + (I3)2 – 2AI3)P
⇒ PM = (A – I3)2P
Det(PM) = Det((A – I3)2P)
(Det P)(Det M) = (Det(A – I3)2)(Det P)
Det M = Det(A – I3)2
Now, A – I3 = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)] - [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
A – I3 = `[(1, 7, ω^2),(-1, -ω -1, 1),(0, -ω, -ω)]`
Det(A – I3) = 1(ω2 + ω + ω) – 7(ω – 0) + ω2(ω – 0)
⇒ Det(A – I3) = ω2 + 2ω – 7ω + ω3
⇒ Det(A – I3) = ω3 + ω2 – 5ω
⇒ Det(A – I3) = –6ω
⇒ Det(A – I3)2 = 36ω2
⇒ αω2 = 36ω2
⇒ α = 36.