मराठी

Let P = [-302056901401121206014] and A = ωωωω[27ω2-1-ω10-ω-ω+1] where ω = -1+i32, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2 -

Advertisements
Advertisements

प्रश्न

Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.

पर्याय

  • 35

  • 36

  • 37

  • 38

MCQ
रिकाम्या जागा भरा

उत्तर

Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to 36.

Explanation:

Given that P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]`

A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]`; ω = `(-1 + isqrt(3))/2`

Let M =  (P–1AP – I3)2 

⇒ M = (P–1AP)2 + (I3)2 – 2(P–1AP)(I3)

M = (P–1AP)2P + I3 – 2(P–1AP)

M = P–1A2P + I3 – 2P–1AP

PM = A2P + PI3 – 2AP

⇒ PM = (A2 + I3 – 2A)P

PM = (A2 + (I3)2 – 2AI3)P

⇒ PM = (A – I3)2P

 Det(PM) = Det((A – I3)2P)

(Det P)(Det M) = (Det(A – I3)2)(Det P)

Det M = Det(A – I3)2

Now, A – I3 = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)] - [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`

A – I3 = `[(1, 7, ω^2),(-1, -ω -1, 1),(0, -ω, -ω)]`

Det(A – I3) = 1(ω2 + ω + ω) – 7(ω – 0) + ω2(ω – 0)

⇒ Det(A – I3) = ω2 + 2ω – 7ω + ω3

⇒ Det(A – I3) = ω3 + ω2 – 5ω

⇒ Det(A – I3) = –6ω

⇒ Det(A – I3)2 = 36ω2

⇒ αω2 = 36ω2

⇒ α = 36.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×