Advertisements
Advertisements
Question
Let P =
Options
35
36
37
38
Solution
Let P =
Explanation:
Given that P =
A =
Let M = (P–1AP – I3)2
⇒ M = (P–1AP)2 + (I3)2 – 2(P–1AP)(I3)
M = (P–1AP)2P + I3 – 2(P–1AP)
M = P–1A2P + I3 – 2P–1AP
PM = A2P + PI3 – 2AP
⇒ PM = (A2 + I3 – 2A)P
PM = (A2 + (I3)2 – 2AI3)P
⇒ PM = (A – I3)2P
Det(PM) = Det((A – I3)2P)
(Det P)(Det M) = (Det(A – I3)2)(Det P)
Det M = Det(A – I3)2
Now, A – I3 =
A – I3 =
Det(A – I3) = 1(ω2 + ω + ω) – 7(ω – 0) + ω2(ω – 0)
⇒ Det(A – I3) = ω2 + 2ω – 7ω + ω3
⇒ Det(A – I3) = ω3 + ω2 – 5ω
⇒ Det(A – I3) = –6ω
⇒ Det(A – I3)2 = 36ω2
⇒ αω2 = 36ω2
⇒ α = 36.