मराठी

Solve the Following System of Equations by Matrix Method: X − Y + 2z = 7 3x + 4y − 5z = −5 2x − Y + 3z = 12 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12

उत्तर

Here,
\[A = \begin{bmatrix}1 & - 1 & 2 \\ 3 & 4 & - 5 \\ 2 & - 1 & 3\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & - 1 & 2 \\ 3 & 4 & - 5 \\ 2 & - 1 & 3\end{vmatrix}\]
\[ = 1\left( 12 - 5 \right) + 1\left( 9 + 10 \right) + 2( - 3 - 8)\]
\[ = 7 + 19 - 22\]
\[ = 4\]
\[\text{ Let }C_{ij}\text{ be the cofactors of elements }a_{ij}\text{ in }A = \left[ a_{ij} \right] .\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}4 & - 5 \\ - 1 & 3\end{vmatrix} = 7, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & - 5 \\ 2 & 3\end{vmatrix} = - 19, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 4 \\ 2 & - 1\end{vmatrix} = - 11\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 1 & 2 \\ - 1 & 3\end{vmatrix} = 1 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 2 \\ 2 & 3\end{vmatrix} = - 1 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 1 \\ 2 & - 1\end{vmatrix} = - 1\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 1 & 2 \\ 4 & - 5\end{vmatrix} = - 3, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 2 \\ 3 & - 5\end{vmatrix} = 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 1 \\ 3 & 4\end{vmatrix} = 7\]
\[adj A = \begin{bmatrix}7 & - 19 & - 11 \\ 1 & - 1 & - 1 \\ - 3 & 11 & 7\end{bmatrix}^T \]
\[ = \begin{bmatrix}7 & 1 & - 3 \\ - 19 & - 1 & 11 \\ - 11 & - 1 & 7\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{4}\begin{bmatrix}7 & 1 & - 3 \\ - 19 & - 1 & 11 \\ - 11 & - 1 & 7\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}7 & 1 & - 3 \\ - 19 & - 1 & 11 \\ - 11 & - 1 & 7\end{bmatrix}\begin{bmatrix}7 \\ - 5 \\ 12\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}49 - 5 - 36 \\ - 133 + 5 + 132 \\ - 77 + 5 + 84\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}8 \\ 4 \\ 12\end{bmatrix}\]
\[ \Rightarrow x = \frac{8}{4}, y = \frac{4}{4}\text{ and }z = \frac{12}{4}\]
\[ \therefore x = 2, y = 1\text{ and }z = 3 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 2.14 | पृष्ठ १४

संबंधित प्रश्‍न

If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.


Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Solve system of linear equations, using matrix method.

5x + 2y = 3

3x + 2y = 5


Evaluate :

\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]


Prove that:

`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`


Prove the following identities:

\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]


\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}z & x & y \\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4\end{vmatrix} = \begin{vmatrix}x & y & z \\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4\end{vmatrix} = \begin{vmatrix}x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z\end{vmatrix} = xyz \left( x - y \right) \left( y - z \right) \left( z - x \right) \left( x + y + z \right) .\]

 


Prove that :

\[\begin{vmatrix}1 & a^2 + bc & a^3 \\ 1 & b^2 + ca & b^3 \\ 1 & c^2 + ab & c^3\end{vmatrix} = - \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a^2 + b^2 + c^2 \right)\]

 


3x + ay = 4
2x + ay = 2, a ≠ 0


3x + y = 5
− 6x − 2y = 9


Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0


For what value of x, the following matrix is singular?

\[\begin{bmatrix}5 - x & x + 1 \\ 2 & 4\end{bmatrix}\]

 


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is 



Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\]  to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are


For what value of p, is the system of equations:

p3x + (p + 1)3y = (p + 2)3

px + (p + 1)y = p + 2

x + y = 1

consistent?


Choose the correct option:

If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is


If the system of linear equations

2x + y – z = 7

x – 3y + 2z = 1

x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×