Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
उत्तर
Here,
\[A = \begin{bmatrix}1 & - 1 & 2 \\ 3 & 4 & - 5 \\ 2 & - 1 & 3\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & - 1 & 2 \\ 3 & 4 & - 5 \\ 2 & - 1 & 3\end{vmatrix}\]
\[ = 1\left( 12 - 5 \right) + 1\left( 9 + 10 \right) + 2( - 3 - 8)\]
\[ = 7 + 19 - 22\]
\[ = 4\]
\[\text{ Let }C_{ij}\text{ be the cofactors of elements }a_{ij}\text{ in }A = \left[ a_{ij} \right] .\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}4 & - 5 \\ - 1 & 3\end{vmatrix} = 7, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & - 5 \\ 2 & 3\end{vmatrix} = - 19, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 4 \\ 2 & - 1\end{vmatrix} = - 11\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 1 & 2 \\ - 1 & 3\end{vmatrix} = 1 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 2 \\ 2 & 3\end{vmatrix} = - 1 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 1 \\ 2 & - 1\end{vmatrix} = - 1\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 1 & 2 \\ 4 & - 5\end{vmatrix} = - 3, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 2 \\ 3 & - 5\end{vmatrix} = 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 1 \\ 3 & 4\end{vmatrix} = 7\]
\[adj A = \begin{bmatrix}7 & - 19 & - 11 \\ 1 & - 1 & - 1 \\ - 3 & 11 & 7\end{bmatrix}^T \]
\[ = \begin{bmatrix}7 & 1 & - 3 \\ - 19 & - 1 & 11 \\ - 11 & - 1 & 7\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{4}\begin{bmatrix}7 & 1 & - 3 \\ - 19 & - 1 & 11 \\ - 11 & - 1 & 7\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}7 & 1 & - 3 \\ - 19 & - 1 & 11 \\ - 11 & - 1 & 7\end{bmatrix}\begin{bmatrix}7 \\ - 5 \\ 12\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}49 - 5 - 36 \\ - 133 + 5 + 132 \\ - 77 + 5 + 84\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}8 \\ 4 \\ 12\end{bmatrix}\]
\[ \Rightarrow x = \frac{8}{4}, y = \frac{4}{4}\text{ and }z = \frac{12}{4}\]
\[ \therefore x = 2, y = 1\text{ and }z = 3 .\]
APPEARS IN
संबंधित प्रश्न
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]
Prove the following identity:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that :
Prove that :
Prove that :
Prove that :
3x + ay = 4
2x + ay = 2, a ≠ 0
3x + y = 5
− 6x − 2y = 9
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
For what value of x, the following matrix is singular?
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.