Advertisements
Advertisements
Question
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Solution
Here,
\[A = \begin{bmatrix}1 & - 1 & 2 \\ 3 & 4 & - 5 \\ 2 & - 1 & 3\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & - 1 & 2 \\ 3 & 4 & - 5 \\ 2 & - 1 & 3\end{vmatrix}\]
\[ = 1\left( 12 - 5 \right) + 1\left( 9 + 10 \right) + 2( - 3 - 8)\]
\[ = 7 + 19 - 22\]
\[ = 4\]
\[\text{ Let }C_{ij}\text{ be the cofactors of elements }a_{ij}\text{ in }A = \left[ a_{ij} \right] .\text{ Then, }\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}4 & - 5 \\ - 1 & 3\end{vmatrix} = 7, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}3 & - 5 \\ 2 & 3\end{vmatrix} = - 19, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}3 & 4 \\ 2 & - 1\end{vmatrix} = - 11\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}- 1 & 2 \\ - 1 & 3\end{vmatrix} = 1 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 2 \\ 2 & 3\end{vmatrix} = - 1 , C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & - 1 \\ 2 & - 1\end{vmatrix} = - 1\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}- 1 & 2 \\ 4 & - 5\end{vmatrix} = - 3, C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 2 \\ 3 & - 5\end{vmatrix} = 11, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & - 1 \\ 3 & 4\end{vmatrix} = 7\]
\[adj A = \begin{bmatrix}7 & - 19 & - 11 \\ 1 & - 1 & - 1 \\ - 3 & 11 & 7\end{bmatrix}^T \]
\[ = \begin{bmatrix}7 & 1 & - 3 \\ - 19 & - 1 & 11 \\ - 11 & - 1 & 7\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{4}\begin{bmatrix}7 & 1 & - 3 \\ - 19 & - 1 & 11 \\ - 11 & - 1 & 7\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}7 & 1 & - 3 \\ - 19 & - 1 & 11 \\ - 11 & - 1 & 7\end{bmatrix}\begin{bmatrix}7 \\ - 5 \\ 12\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}49 - 5 - 36 \\ - 133 + 5 + 132 \\ - 77 + 5 + 84\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{4}\begin{bmatrix}8 \\ 4 \\ 12\end{bmatrix}\]
\[ \Rightarrow x = \frac{8}{4}, y = \frac{4}{4}\text{ and }z = \frac{12}{4}\]
\[ \therefore x = 2, y = 1\text{ and }z = 3 .\]
APPEARS IN
RELATED QUESTIONS
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]
Prove the following identities:
\[\begin{vmatrix}x + \lambda & 2x & 2x \\ 2x & x + \lambda & 2x \\ 2x & 2x & x + \lambda\end{vmatrix} = \left( 5x + \lambda \right) \left( \lambda - x \right)^2\]
Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
If \[x, y \in \mathbb{R}\], then the determinant
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.
Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.
2x + 3y − z = 0
x − y − 2z = 0
3x + y + 3z = 0
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
The system of linear equations
3x – 2y – kz = 10
2x – 4y – 2z = 6
x + 2y – z = 5m
is inconsistent if ______.
Let `θ∈(0, π/2)`. If the system of linear equations,
(1 + cos2θ)x + sin2θy + 4sin3θz = 0
cos2θx + (1 + sin2θ)y + 4sin3θz = 0
cos2θx + sin2θy + (1 + 4sin3θ)z = 0
has a non-trivial solution, then the value of θ is
______.
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.