English

Evaluate the Following: ∣ ∣ ∣ ∣ X 1 1 1 X 1 1 1 X ∣ ∣ ∣ ∣ - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]

Solution

Let

\[∆ = \begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]

\[∆ = \begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]

\[ = \begin{vmatrix}x - 1 & 1 - x & 0 \\ 1 & x & 1 \\ 0 & 1 - x & x - 1\end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_3 \to R_3 - R_2 \right]\]

\[ = \left( x - 1 \right)^2 \begin{vmatrix}1 & - 1 & 0 \\ 1 & x & 1 \\ 0 & - 1 & 1\end{vmatrix}\]

\[ = \left( x - 1 \right)^2 \begin{vmatrix}1 & - 1 & 0 \\ 1 & x + 1 & 1 \\ 0 & 0 & 1\end{vmatrix} \left[\text{ Applying }C_2 \to C_2 + C_3 \right]\]

\[ = \left( x - 1 \right)^2 (x + 1 + 1) \left[\text{ Expanding along last row }\right]\]

\[ = \left( x - 1 \right)^2 (x + 2)\]

\[ \therefore ∆ = \left( x - 1 \right)^2 (x + 2)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.2 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.2 | Q 7 | Page 58

RELATED QUESTIONS

Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Prove the following identities:

\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^2 \\ 1 & a & a^2 \\ 1 & b & b^2\end{vmatrix} = 0, a \neq b\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0


An automobile company uses three types of steel S1S2 and S3 for producing three types of cars C1C2and C3. Steel requirements (in tons) for each type of cars are given below : 

  Cars
C1
C2 C3
Steel S1 2 3 4
S2 1 1 2
S3 3 2 1

Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.


Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0


Write the value of the determinant 

\[\begin{vmatrix}a & 1 & b + c \\ b & 1 & c + a \\ c & 1 & a + b\end{vmatrix} .\]

 


Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\]  = 8, then find the value of x.


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]





The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

System of equations x + y = 2, 2x + 2y = 3 has ______


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×