Advertisements
Advertisements
Question
Evaluate the following:
\[\begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
Solution
Let
\[∆ = \begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[∆ = \begin{vmatrix}x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x\end{vmatrix}\]
\[ = \begin{vmatrix}x - 1 & 1 - x & 0 \\ 1 & x & 1 \\ 0 & 1 - x & x - 1\end{vmatrix} \left[\text{ Applying }R_1 \to R_1 - R_2\text{ and }R_3 \to R_3 - R_2 \right]\]
\[ = \left( x - 1 \right)^2 \begin{vmatrix}1 & - 1 & 0 \\ 1 & x & 1 \\ 0 & - 1 & 1\end{vmatrix}\]
\[ = \left( x - 1 \right)^2 \begin{vmatrix}1 & - 1 & 0 \\ 1 & x + 1 & 1 \\ 0 & 0 & 1\end{vmatrix} \left[\text{ Applying }C_2 \to C_2 + C_3 \right]\]
\[ = \left( x - 1 \right)^2 (x + 1 + 1) \left[\text{ Expanding along last row }\right]\]
\[ = \left( x - 1 \right)^2 (x + 2)\]
\[ \therefore ∆ = \left( x - 1 \right)^2 (x + 2)\]
APPEARS IN
RELATED QUESTIONS
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Solve the following determinant equation:
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that :
x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
Write the value of the determinant
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If x ∈ N and \[\begin{vmatrix}x + 3 & - 2 \\ - 3x & 2x\end{vmatrix}\] = 8, then find the value of x.
Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to
The value of the determinant
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
The value of the determinant
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
System of equations x + y = 2, 2x + 2y = 3 has ______
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?