English

Prove that : ∣ ∣ ∣ ∣ B + C a − B a C + a B − C B a + B C − a C ∣ ∣ ∣ ∣ = 3 a B C − a 3 − B − C - Mathematics

Advertisements
Advertisements

Question

Prove that :

\[\begin{vmatrix}b + c & a - b & a \\ c + a & b - c & b \\ a + b & c - a & c\end{vmatrix} = 3abc - a^3 - b - c^3\]

 

Solution

\[\text{Let LHS }= \Delta = \begin{vmatrix} b + c & a - b & a\\c + a & b - c & b \\a + b & c - a & c \end{vmatrix}\] 

\[\Delta = \left( b + c \right) \begin{vmatrix} b - c & b \\c - a & c \end{vmatrix} - \left( a - b \right) \begin{vmatrix} c + a & b \\ a + b & c \end{vmatrix} + a \begin{vmatrix} c + a & b - c \\a + b & c - a \end{vmatrix} \left[\text{ Expanding }\right] \] 
\[ = \left( b + c \right)\left\{ bc - c^2 - bc + ab \right\} - \left( a - b \right)\left\{ c^2 + ac - ab - b^2 \right\} + a\left\{ c^2 - a^2 - ab + ac - b^2 + bc \right\}\] 
\[ = b c^2 - c^3 + abc - a c^2 - a^2 c + a^2 b + a b^2 + b c^2 + abc - a b^2 - b^3 + a c^2 - a^3 - a^2 c - a b^2 + abc\] 
\[ \Rightarrow \Delta = 3abc - a^3 - b^3 - c^3 \left[\text{ Simplyfying }\right]\] 
\[ = RHS\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.2 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.2 | Q 12 | Page 58

RELATED QUESTIONS

Examine the consistency of the system of equations.

x + 2y = 2

2x + 3y = 3


Show that

\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]


Find the value of x, if

\[\begin{vmatrix}2 & 3 \\ 4 & 5\end{vmatrix} = \begin{vmatrix}x & 3 \\ 2x & 5\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Prove that:

`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0


Write the value of the determinant 
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]

 


Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]


Find the value of the determinant 
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]

 


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]


If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]


If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.


If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]


If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]




The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0


Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12


Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5


Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13


A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.


3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A


The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to


Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×