English

Solve the Following System of Equations by Matrix Method: 5x + 7y + 2 = 0 4x + 6y + 3 = 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0

Solution

 The given system of equations can be written in matrix form as folllows:
\[\begin{bmatrix}5 & 7 \\ 4 & 6\end{bmatrix} \binom{x}{y} = \binom{ - 2}{ - 3}\]
\[AX=B\]
Here,
\[A = \begin{bmatrix}5 & 7 \\ 4 & 6\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{ - 2}{ - 3}\]
Now,
\[\left| A \right| = \begin{bmatrix}5 & 7 \\ 4 & 6\end{bmatrix} \]
\[ = 30 - 28\]
\[ = 2 \neq 0 \]
\[\text{ The given system has a unique solution given by }X = A^{- 1} B . \]
\[{ \text{ Let }C}_{ij} {\text{be the cofactors of the elements a}}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \left( 6 \right) = 6 , C_{12} = \left( - 1 \right)^{1 + 2} \left( 4 \right) = - 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \left( 7 \right) = - 7, C_{22} = \left( - 1 \right)^{2 + 2} \left( 5 \right)\]
\[ = 5\]
\[adj A = \begin{bmatrix}6 & - 4 \\ - 7 & 5\end{bmatrix}^T \]
\[ = \begin{bmatrix}6 & - 7 \\ - 4 & 5\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ \Rightarrow A^{- 1} = \frac{1}{2}\begin{bmatrix}6 & - 7 \\ - 4 & 5\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ = \frac{1}{2}\begin{bmatrix}6 & - 7 \\ - 4 & 5\end{bmatrix}\binom{ - 2}{ - 3}\]
\[ = \frac{1}{2}\binom{ - 12 + 21}{8 - 15}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{9}{2}}{\frac{- 7}{2}}\]
\[ \therefore x = \frac{9}{2}\text{ and } y = \frac{- 7}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 1.1 | Page 14

RELATED QUESTIONS

Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Solve the system of linear equations using the matrix method.

x − y + z = 4

2x + y − 3z = 0

x + y + z = 2


Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]


\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

For what value of x the matrix A is singular? 

\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2\end{vmatrix} = 4 a^2 b^2 c^2\]

Given: x + 2y = 1
            3x + y = 4


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.


The determinant  \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]


 


The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is


Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:

\[\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2; x, y, z \neq 0\]

 


Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

Solve the following system of equations by using inversion method

x + y = 1, y + z = `5/3`, z + x = `4/3`


If `|(2x, 5),(8, x)| = |(6, -2),(7, 3)|`, then value of x is ______.


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


Choose the correct option:

If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×