English

Solve the Following System of Equations by Matrix Method: X + Y + Z = 3 2x − Y + Z = − 1 2x + Y − 3z = − 9 - Mathematics

Advertisements
Advertisements

Question

Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9

Solution

Here,
\[A = \begin{bmatrix}1 & 1 & 1 \\ 2 & - 1 & 1 \\ 2 & 1 & - 3\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}1 & 1 & 1 \\ 2 & - 1 & 1 \\ 2 & 1 & - 3\end{vmatrix}\]
\[ = 1\left( 3 - 1 \right) - 1\left( - 6 - 2 \right) + 1(2 + 2)\]
\[ = 2 + 8 + 4\]
\[ = 14\]
\[ {\text{ Let }C}_{ij} {\text{be the cofactors of the elements a}}_{ij}\text{ in }A\left[ a_{ij} \right]. \text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}- 1 & 1 \\ 1 & - 3\end{vmatrix} = 2 , C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 1 \\ 2 & - 3\end{vmatrix} = 8, C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & - 1 \\ 2 & 1\end{vmatrix} = 4\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}1 & 1 \\ 1 & - 3\end{vmatrix} = 4, C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}1 & 1 \\ 2 & - 3\end{vmatrix} = - 5, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}1 & 1 \\ 2 & 1\end{vmatrix} = 1\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}1 & 1 \\ - 1 & 1\end{vmatrix} = 2 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}1 & 1 \\ 2 & 1\end{vmatrix} = 1, C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}1 & 1 \\ 2 & - 1\end{vmatrix} = - 3\]
\[adj A = \begin{bmatrix}2 & 8 & 4 \\ 4 & - 5 & 1 \\ 2 & 1 & - 3\end{bmatrix}^T \]
\[ = \begin{bmatrix}2 & 4 & 2 \\ 8 & - 5 & 1 \\ 4 & 1 & - 3\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{14}\begin{bmatrix}2 & 4 & 2 \\ 8 & - 5 & 1 \\ 4 & 1 & - 3\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{14}\begin{bmatrix}2 & 4 & 2 \\ 8 & - 5 & 1 \\ 4 & 1 & - 3\end{bmatrix}\begin{bmatrix}3 \\ - 1 \\ - 9\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{14}\begin{bmatrix}6 - 4 - 18 \\ 24 + 5 - 9 \\ 12 - 1 + 27\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{14}\begin{bmatrix}- 16 \\ 20 \\ 38\end{bmatrix}\]
\[ \Rightarrow x = \frac{- 16}{14}, y = \frac{20}{14}\text{ and }z = \frac{38}{14}\]
\[ \therefore x = \frac{- 8}{7}, y = \frac{10}{7}\text{ and }z = \frac{19}{7}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 2.02 | Page 14

RELATED QUESTIONS

If `|[2x,5],[8,x]|=|[6,-2],[7,3]|`, write the value of x.


Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Examine the consistency of the system of equations.

5x − y + 4z = 5

2x + 3y + 5z = 2

5x − 2y + 6z = −1


For what value of x the matrix A is singular? 

\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]


\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]


Prove the following identity:

`|(a^3,2,a),(b^3,2,b),(c^3,2,c)| = 2(a-b) (b-c) (c-a) (a+b+c)`

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & 1 & x \\ p + 1 & p + 1 & p + x \\ 3 & x + 1 & x + 2\end{vmatrix} = 0\]

Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


Using determinants, find the value of k so that the points (k, 2 − 2 k), (−k + 1, 2k) and (−4 − k, 6 − 2k) may be collinear.


Prove that :

\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]


6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


xy = 5
y + z = 3
x + z = 4


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]


If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]


If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


A company produces three products every day. Their production on a certain day is 45 tons. It is found that the production of third product exceeds the production of first product by 8 tons while the total production of first and third product is twice the production of second product. Determine the production level of each product using matrix method.


Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. The school A wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹1,600. School B wants to spend ₹2,300 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is ₹900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for award.

 

Two schools P and Q want to award their selected students on the values of Tolerance, Kindness and Leadership. The school P wants to award ₹x each, ₹y each and ₹z each for the three respective values to 3, 2 and 1 students respectively with a total award money of ₹2,200. School Q wants to spend ₹3,100 to award its 4, 1 and 3 students on the respective values (by giving the same award money to the three values as school P). If the total amount of award for one prize on each values is ₹1,200, using matrices, find the award money for each value.
Apart from these three values, suggest one more value which should be considered for award.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ - 1 \\ 0\end{bmatrix}\], find x, y and z.

If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4


The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on


Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`


If A = `[(2, 0),(0, 1)]` and B = `[(1),(2)]`, then find the matrix X such that A−1X = B.


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is


The system of linear equations

3x – 2y – kz = 10

2x – 4y – 2z = 6

x + 2y – z = 5m

is inconsistent if ______.


If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×