हिंदी

Solve the Following System of Equations by Matrix Method: X + Y + Z = 3 2x − Y + Z = − 1 2x + Y − 3z = − 9 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9

उत्तर

Here,
A=[111211213]
|A|=|111211213|
=1(31)1(62)+1(2+2)
=2+8+4
=14
 Let Cijbe the cofactors of the elements aij in A[aij]. Then,
C11=(1)1+1|1113|=2,C12=(1)1+2|2123|=8,C13=(1)1+3|2121|=4
C21=(1)2+1|1113|=4,C22=(1)2+2|1123|=5,C23=(1)2+3|1121|=1
C31=(1)3+1|1111|=2,C32=(1)3+2|1121|=1,C33=(1)3+3|1121|=3
adjA=[284451213]T
=[242851413]
A1=1|A|adjA
=114[242851413]
X=A1B
[xyz]=114[242851413][319]
[xyz]=114[641824+59121+27]
[xyz]=114[162038]
x=1614,y=2014 and z=3814
x=87,y=107 and z=197

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 2.02 | पृष्ठ १४

संबंधित प्रश्न

Solve the system of linear equations using the matrix method.

x − y + 2z = 7

3x + 4y − 5z = −5

2x − y + 3z = 12


If A [101012004] , then show that |3 A| = 27 |A|.

 

Find the value of x, if
|2451|=|2x46x|


Find the value of x, if

|2x58x|=|6583|


Evaluate the following determinant:

|132412352|


Without expanding, show that the value of the following determinant is zero:

|sinαcosαcos(α+δ)sinβcosβcos(β+δ)sinγcosγcos(γ+δ)|


Prove the following identity:

|a32ab32bc32c|=2(a-b)(b-c)(c-a)(a+b+c)

 


If|pbcaqcabr|=0, find the value of ppa+qqb+rrc,pa,qb,rc.

 


​Solve the following determinant equation:

|1xx21aa21bb2|=0,ab

 


​Solve the following determinant equation:

|1xx31bb31cc3|=0,bc

 


​Solve the following determinant equation:
|152x113x7x111714101613|=0

Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).


Prove that :

|abccbacbcaabbac|=(a+bc)(b+ca)(c+ab)

 


2x − y = 17
3x + 5y = 6


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


If A=[1231] and B=[1432], find |AB|


Write the value of the determinant |23546106915|.


If |3x724|=|8764| , find the value of x.


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

|2aa+ba+cb+a2bb+cc+ac+b2c|
The other factor in the value of the determinant is


The value of the determinant |xx+yx+2yx+2yxx+yx+yx+2yx| is 



There are two values of a which makes the determinant  =|1252a1042a|  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:
 x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1


Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:

2x+3y+10z=4,4x6y+5z=1,6x+9y20z=2;x,y,z0

 


Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1


Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4


If A=[120212011] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7


The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.


x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0


If [100010001][xyz]=[110], find x, y and z.

The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is


Let X=[x1x2x3],A=[112201321] and B=[314] . If AX = B, then X is equal to

 


x + y = 1
x + z = − 6
x − y − 2z = 3


Solve the following system of equations by using inversion method

x + y = 1, y + z = 53, z + x = 43


|1a2+bca31b2+cab31c2+abc3|


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.