Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
उत्तर
Here,
APPEARS IN
संबंधित प्रश्न
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
If A
Find the value of x, if
Find the value of x, if
Evaluate the following determinant:
Without expanding, show that the value of the following determinant is zero:
Prove the following identity:
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).
Prove that :
2x − y = 17
3x + 5y = 6
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1
If
Write the value of the determinant
If
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
The value of the determinant
There are two values of a which makes the determinant
Solve the following system of equations by matrix method:
x + y − z = 3
2x + 3y + z = 10
3x − y − 7z = 1
Solve the following system of equations by matrix method:
6x − 12y + 25z = 4
4x + 15y − 20z = 3
2x + 18y + 15z = 10
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Solve the following system of equations by matrix method:
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
If
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
Let
x + y = 1
x + z = − 6
x − y − 2z = 3
Solve the following system of equations by using inversion method
x + y = 1, y + z =