Advertisements
Advertisements
प्रश्न
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
उत्तर
Given: 3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20
\[D = \begin{vmatrix}3 & - 1 & 2 \\ 2 & - 1 & 1 \\ 3 & 6 & 5\end{vmatrix}\]
\[3\left( - 5 - 6 \right) + 1\left( 10 - 3 \right) + 2\left( 12 + 3 \right) = 4\]
Since D is non-zero, the system of linear equations is consistent and has a unique solution.
\[ D_1 = \begin{vmatrix}6 & - 1 & 2 \\ 2 & - 1 & 1 \\ 20 & 6 & 5\end{vmatrix}\]
\[ = 6\left( - 5 - 6 \right) + 1\left( 10 - 20 \right) + 2\left( 12 + 20 \right)\]
\[ = - 66 - 10 + 64\]
\[ = - 12\]
\[ D_2 = \begin{vmatrix}3 & 6 & 2 \\ 2 & 2 & 1 \\ 3 & 20 & 5\end{vmatrix}\]
\[ = 3\left( 10 - 20 \right) - 6\left( 10 - 3 \right) + 2\left( 40 - 6 \right)\]
\[ = - 30 - 42 + 68\]
\[ = - 4\]
\[ D_3 = \begin{vmatrix}3 & - 1 & 6 \\ 2 & - 1 & 2 \\ 3 & 6 & 20\end{vmatrix}\]
\[ = 3\left( - 20 - 12 \right) + 1\left( 40 - 6 \right) + 6\left( 12 + 3 \right)\]
\[ = - 96 + 34 + 90\]
\[ = 28\]
Now,
\[x = \frac{D_1}{D} = \frac{- 12}{4} = - 3\]
\[y = \frac{D_2}{D} = \frac{- 4}{4} = - 1\]
\[z = \frac{D_3}{D} = \frac{28}{4} = 7\]
\[ \therefore x = - 3, y = - 1\text{ and }z = 7\]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
5x − y + 4z = 5
2x + 3y + 5z = 2
5x − 2y + 6z = −1
Solve system of linear equations, using matrix method.
5x + 2y = 4
7x + 3y = 5
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
\[If ∆ = \begin{vmatrix}1 & x & x^2 \\ 1 & y & y^2 \\ 1 & z & z^2\end{vmatrix}, ∆_1 = \begin{vmatrix}1 & 1 & 1 \\ yz & zx & xy \\ x & y & z\end{vmatrix},\text{ then prove that }∆ + ∆_1 = 0 .\]
Solve the following determinant equation:
If a, b, c are real numbers such that
\[\begin{vmatrix}b + c & c + a & a + b \\ c + a & a + b & b + c \\ a + b & b + c & c + a\end{vmatrix} = 0\] , then show that either
\[a + b + c = 0 \text{ or, } a = b = c\]
If \[a, b\] and c are all non-zero and
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Using determinants, find the equation of the line joining the points
(1, 2) and (3, 6)
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
Prove that :
Given: x + 2y = 1
3x + y = 4
x+ y = 5
y + z = 3
x + z = 4
If A is a singular matrix, then write the value of |A|.
If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\] is singular, find the value of x.
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
If ω is a non-real cube root of unity and n is not a multiple of 3, then \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\]
The value of the determinant
Solve the following system of equations by matrix method:
3x + 7y = 4
x + 2y = −1
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
Solve the following by inversion method 2x + y = 5, 3x + 5y = −3
Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:
The value of λ, such that the following system of equations has no solution, is
`2x - y - 2z = - 5`
`x - 2y + z = 2`
`x + y + lambdaz = 3`
The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.