Advertisements
Advertisements
प्रश्न
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
उत्तर
\[ ∆ = \begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
\[ = \begin{vmatrix}1 & 1 & 6 \\ 7 & 7 & 4 \\ 3 & 3 & 2\end{vmatrix} = 0 \left[ \text{ Applying }C_2 \to C_2 - 7 C_3 \right]\]
APPEARS IN
संबंधित प्रश्न
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
For what value of x the matrix A is singular?
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Prove that :
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
The value of the determinant
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
The value of \[\begin{vmatrix}1 & 1 & 1 \\ {}^n C_1 & {}^{n + 2} C_1 & {}^{n + 4} C_1 \\ {}^n C_2 & {}^{n + 2} C_2 & {}^{n + 4} C_2\end{vmatrix}\] is
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations x − 2y = 10, 2x − y − z = 8, −2y + z = 7
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
Solve the following system of equations by using inversion method
x + y = 1, y + z = `5/3`, z + x = `4/3`
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.