हिंदी

Without expanding, show that the value of the following determinant is zero: ∣ ∣ ∣ ∣ ∣ ∣ ( 2 x + 2 − x ) 2 ( 2 x − 2 − x ) 2 1 ( 3 x + 3 − x ) 2 ( 3 x − 3 − x ) 2 1 ( 4 x + 4 - Mathematics

Advertisements
Advertisements

प्रश्न

Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]

उत्तर

\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
\[ = \begin{vmatrix}\left( 2^{2x} + 2^{- 2x} + 2 \right) & \left( 2^{2x} + 2^{- 2x} - 2 \right) & 1 \\ \left( 3^{2x} + 3^{- 2x} + 2 \right) & \left( 3^{2x} + 3^{- 2x} - 2 \right) & 1 \\ \left( 4^{2x} + 4^{- 2x} + 2 \right) & \left( 4^{2x} + 4^{- 2x} - 2 \right) & 1\end{vmatrix}\]
\[ = \begin{vmatrix}4 & \left( 2^{2x} + 2^{- 2x} - 2 \right) & 1 \\ 4 & \left( 3^{2x} + 3^{- 2x} - 2 \right) & 1 \\ 4 & \left( 4^{2x} + 4^{- 2x} - 2 \right) & 1\end{vmatrix} \left[ \text{ Applying }C_1 \to C_1 - C_2 \right]\]
\[ = 4\begin{vmatrix}1 & \left( 2^{2x} + 2^{- 2x} - 2 \right) & 1 \\ 1 & \left( 3^{2x} + 3^{- 2x} - 2 \right) & 1 \\ 1 & \left( 4^{2x} + 4^{- 2x} - 2 \right) & 1\end{vmatrix}\]
\[ = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.2 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.2 | Q 2.12 | पृष्ठ ५७

संबंधित प्रश्न

Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Solve system of linear equations, using matrix method.

5x + 2y = 3

3x + 2y = 5


Solve the system of linear equations using the matrix method.

x − y + 2z = 7

3x + 4y − 5z = −5

2x − y + 3z = 12


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}2x & 5 \\ 8 & x\end{vmatrix} = \begin{vmatrix}6 & 5 \\ 8 & 3\end{vmatrix}\]


For what value of x the matrix A is singular? 

\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]


\[If \begin{vmatrix}p & b & c \\ a & q & c \\ a & b & r\end{vmatrix} = 0,\text{ find the value of }\frac{p}{p - a} + \frac{q}{q - b} + \frac{r}{r - c}, p \neq a, q \neq b, r \neq c .\]

 


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a^2 & a^2 - \left( b - c \right)^2 & bc \\ b^2 & b^2 - \left( c - a \right)^2 & ca \\ c^2 & c^2 - \left( a - b \right)^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]

6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8


3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.


x − y + z = 3
2x + y − z = 2
− x − 2y + 2z = 1


If A is a singular matrix, then write the value of |A|.

 

If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.


If A and B are non-singular matrices of the same order, write whether AB is singular or non-singular.


Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]


If \[\begin{vmatrix}2x & x + 3 \\ 2\left( x + 1 \right) & x + 1\end{vmatrix} = \begin{vmatrix}1 & 5 \\ 3 & 3\end{vmatrix}\], then write the value of x.

 

 


If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).


Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3


Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10


If \[A = \begin{bmatrix}1 & 2 & 0 \\ - 2 & - 1 & - 2 \\ 0 & - 1 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations   x − 2y = 10, 2x − y − z = 8, −2y + z = 7


If \[A = \begin{bmatrix}2 & 3 & 1 \\ 1 & 2 & 2 \\ 3 & 1 & - 1\end{bmatrix}\] , find A–1 and hence solve the system of equations 2x + y – 3z = 13, 3x + 2y + z = 4, x + 2y – z = 8.


x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on 


The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×