हिंदी

X + Y + Z = 0 X − Y − 5z = 0 X + 2y + 4z = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0

उत्तर

Here,
x + y + z = 0             ...(1)
x − y − 5z = 0           ...(2)
x + 2y + 4z = 0         ...(3)

The given system of homogeneous equations can be written in matrix form as follows:
\[\begin{bmatrix}1 & 1 & 1 \\ 1 & - 1 & - 5 \\ 1 & 2 & 4\end{bmatrix} \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
\[AX = O\]
Here, 
\[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & - 1 & - 5 \\ 1 & 2 & 4\end{bmatrix}, X = \begin{bmatrix}x \\ y \\ z\end{bmatrix}\text{ and }O = \begin{bmatrix}0 \\ 0 \\ 0\end{bmatrix}\]
Now,
\[\left| A \right| = \begin{vmatrix}1 & 1 & 1 \\ 1 & - 1 & - 5 \\ 1 & 2 & 4\end{vmatrix}\]
\[ = 1\left( - 4 + 10 \right) - 1\left( 4 + 5 \right) + 1(2 + 1)\]
\[ = 6 - 9 + 3\]
\[ = 0\]
\[\therefore\left| A \right|\neq0\]
So, the given systemof homogeneous equations has non-trivial solution.
Substituting z=k in eq. (1) and eq, (2), we get
\[x + y = - k\text{ and }x - y = 5k\]
\[AX = B\]
Here,
\[A=\begin{bmatrix}1 & 1 \\ 1 & - 1\end{bmatrix}, X=\binom{x}{y}\text{ and }B = \binom{ - k}{5k}\]
\[ \Rightarrow \begin{bmatrix}1 & 1 \\ 1 & - 1\end{bmatrix}\binom{x}{y} = \binom{ - k}{5k}\]
\[\left| A \right|=\begin{vmatrix}1 & 1 \\ 1 & - 1\end{vmatrix}\]
\[ =\left( 1 \times - 1 - 1 \times 1 \right)\]
\[ =-2\]
\[So, A^{- 1}\text{ exists }. \]
We have
\[adjA=\begin{bmatrix}- 1 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[ A^{- 1} =\frac{1}{\left| A \right|}adjA\]
\[ \Rightarrow A^{- 1} = \frac{1}{- 2}\begin{bmatrix}- 1 & - 1 \\ - 1 & 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \binom{x}{y} = \frac{1}{- 2}\begin{bmatrix}- 1 & - 1 \\ - 1 & 1\end{bmatrix}\binom{ - k}{5k}\]
\[ = \frac{1}{- 2}\binom{k - 5k}{k + 5k}\]
\[\text{ Thus,} x=2k,y=-3k\text{ and }z=k\left( \text{ wherekis any real number } \right)\text{ satisfy the given system of equations. }\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Solution of Simultaneous Linear Equations - Exercise 8.2 [पृष्ठ २०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 8 Solution of Simultaneous Linear Equations
Exercise 8.2 | Q 5 | पृष्ठ २०

संबंधित प्रश्न

Examine the consistency of the system of equations.

5x − y + 4z = 5

2x + 3y + 5z = 2

5x − 2y + 6z = −1


Evaluate the following determinant:

\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


Evaluate

\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.

 

If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.

 

Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]


Prove the following identity:

\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix} = a^2 \left( a + x + y + z \right)\]

 


Find the area of the triangle with vertice at the point:

 (−1, −8), (−2, −3) and (3, 2)


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.


Using determinants, find the equation of the line joining the points

(1, 2) and (3, 6)


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

2x + 3y = 10
x + 6y = 4


5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


x + 2y = 5
3x + 6y = 15


Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


The value of the determinant

\[\begin{vmatrix}a^2 & a & 1 \\ \cos nx & \cos \left( n + 1 \right) x & \cos \left( n + 2 \right) x \\ \sin nx & \sin \left( n + 1 \right) x & \sin \left( n + 2 \right) x\end{vmatrix}\text{ is independent of}\]

 


The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\]  lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]


If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]





Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6


Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10


Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.

 

x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has


System of equations x + y = 2, 2x + 2y = 3 has ______


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


The system of linear equations

3x – 2y – kz = 10

2x – 4y – 2z = 6

x + 2y – z = 5m

is inconsistent if ______.


If the following equations

x + y – 3 = 0 

(1 + λ)x + (2 + λ)y – 8 = 0

x – (1 + λ)y + (2 + λ) = 0

are consistent then the value of λ can be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×