Advertisements
Advertisements
प्रश्न
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
उत्तर
As there are 3 varieties of pen A, B and C
Meenu purchased 1 pen of each variety which costs her Rs 21
Therefore,
\[A + B + C = 21\]
Similarly,
For Jeevan
\[4A + 3B + 2C = 60\]
For Shikha
\[6A + 2B + 3C = 70\]
\[\begin{bmatrix}1 & 1 & 1 \\ 4 & 3 & 2 \\ 6 & 2 & 3\end{bmatrix}\begin{bmatrix}A \\ B \\ C\end{bmatrix} = \begin{bmatrix}21 \\ 60 \\ 70\end{bmatrix}\]
\[\text{ where }P = \begin{bmatrix}1 & 1 & 1 \\ 4 & 3 & 2 \\ 6 & 2 & 3\end{bmatrix}, Q = \begin{bmatrix}21 \\ 60 \\ 70\end{bmatrix}\]
\[\left| P \right| = 1\left( 9 - 4 \right) - 1\left( 12 - 12 \right) + 1\left( 8 - 18 \right)\]
\[ = - 5 \neq 0\]
\[ \therefore P^{- 1}\text{ exists }\]
\[X = P^{- 1} Q\]
\[ C_{11} = 5 C_{12} = 0 C_{13} = - 10\]
\[ C_{21} = - 1 C_{22} = - 3 C_{23} = 4\]
\[ C_{31} = - 1 C_{32} = 2 C_{33} = - 1\]
\[adj P = \begin{bmatrix}5 & 0 & - 10 \\ - 1 & - 3 & 4 \\ - 1 & 2 & - 1\end{bmatrix}^T = \begin{bmatrix}5 & - 1 & - 1 \\ 0 & - 3 & 2 \\ - 10 & 4 & - 1\end{bmatrix}\]
\[ P^{- 1} = \frac{1}{- 5}\begin{bmatrix}5 & - 1 & - 1 \\ 0 & - 3 & 2 \\ - 10 & 4 & - 1\end{bmatrix}\]
\[X = P^{- 1} Q\]
\[\frac{1}{- 5}\begin{bmatrix}5 & - 1 & - 1 \\ 0 & - 3 & 2 \\ - 10 & 4 & - 1\end{bmatrix}\begin{bmatrix}21 \\ 60 \\ 70\end{bmatrix}\]
\[ = \frac{1}{- 5}\begin{bmatrix}105 - 60 - 70 \\ 0 - 180 + 140 \\ - 210 + 240 - 70\end{bmatrix}\]
\[ = \frac{1}{- 5}\begin{bmatrix}- 25 \\ - 40 \\ - 40\end{bmatrix}\]
\[ \therefore X = \begin{bmatrix}5 \\ 8 \\ 8\end{bmatrix}\]
Therefore, cost of A variety of pens = Rs 5
Cost of B variety of pens = Rs 8
Cost of C variety of pens = Rs 8
APPEARS IN
संबंधित प्रश्न
Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Evaluate the following determinant:
\[\begin{vmatrix}a + ib & c + id \\ - c + id & a - ib\end{vmatrix}\]
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Prove the following identities:
\[\begin{vmatrix}y + z & z & y \\ z & z + x & x \\ y & x & x + y\end{vmatrix} = 4xyz\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Solve the following determinant equation:
If \[\begin{vmatrix}a & b - y & c - z \\ a - x & b & c - z \\ a - x & b - y & c\end{vmatrix} =\] 0, then using properties of determinants, find the value of \[\frac{a}{x} + \frac{b}{y} + \frac{c}{z}\] , where \[x, y, z \neq\] 0
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Using determinants, find the equation of the line joining the points
(1, 2) and (3, 6)
Prove that :
Prove that
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
x + y + z + 1 = 0
ax + by + cz + d = 0
a2x + b2y + x2z + d2 = 0
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
For what value of x, the following matrix is singular?
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\] lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]
Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5
Use product \[\begin{bmatrix}1 & - 1 & 2 \\ 0 & 2 & - 3 \\ 3 & - 2 & 4\end{bmatrix}\begin{bmatrix}- 2 & 0 & 1 \\ 9 & 2 & - 3 \\ 6 & 1 & - 2\end{bmatrix}\] to solve the system of equations x + 3z = 9, −x + 2y − 2z = 4, 2x − 3y + 4z = −3.
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
x + y − z = 0
x − 2y + z = 0
3x + 6y − 5z = 0
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in
If the system of linear equations x + 2ay + az = 0; x + 3by + bz = 0; x + 4cy + cz = 0 has a non-zero solution, then a, b, c ______.