Advertisements
Advertisements
Question
A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.
Solution
As there are 3 varieties of pen A, B and C
Meenu purchased 1 pen of each variety which costs her Rs 21
Therefore,
\[A + B + C = 21\]
Similarly,
For Jeevan
\[4A + 3B + 2C = 60\]
For Shikha
\[6A + 2B + 3C = 70\]
\[\begin{bmatrix}1 & 1 & 1 \\ 4 & 3 & 2 \\ 6 & 2 & 3\end{bmatrix}\begin{bmatrix}A \\ B \\ C\end{bmatrix} = \begin{bmatrix}21 \\ 60 \\ 70\end{bmatrix}\]
\[\text{ where }P = \begin{bmatrix}1 & 1 & 1 \\ 4 & 3 & 2 \\ 6 & 2 & 3\end{bmatrix}, Q = \begin{bmatrix}21 \\ 60 \\ 70\end{bmatrix}\]
\[\left| P \right| = 1\left( 9 - 4 \right) - 1\left( 12 - 12 \right) + 1\left( 8 - 18 \right)\]
\[ = - 5 \neq 0\]
\[ \therefore P^{- 1}\text{ exists }\]
\[X = P^{- 1} Q\]
\[ C_{11} = 5 C_{12} = 0 C_{13} = - 10\]
\[ C_{21} = - 1 C_{22} = - 3 C_{23} = 4\]
\[ C_{31} = - 1 C_{32} = 2 C_{33} = - 1\]
\[adj P = \begin{bmatrix}5 & 0 & - 10 \\ - 1 & - 3 & 4 \\ - 1 & 2 & - 1\end{bmatrix}^T = \begin{bmatrix}5 & - 1 & - 1 \\ 0 & - 3 & 2 \\ - 10 & 4 & - 1\end{bmatrix}\]
\[ P^{- 1} = \frac{1}{- 5}\begin{bmatrix}5 & - 1 & - 1 \\ 0 & - 3 & 2 \\ - 10 & 4 & - 1\end{bmatrix}\]
\[X = P^{- 1} Q\]
\[\frac{1}{- 5}\begin{bmatrix}5 & - 1 & - 1 \\ 0 & - 3 & 2 \\ - 10 & 4 & - 1\end{bmatrix}\begin{bmatrix}21 \\ 60 \\ 70\end{bmatrix}\]
\[ = \frac{1}{- 5}\begin{bmatrix}105 - 60 - 70 \\ 0 - 180 + 140 \\ - 210 + 240 - 70\end{bmatrix}\]
\[ = \frac{1}{- 5}\begin{bmatrix}- 25 \\ - 40 \\ - 40\end{bmatrix}\]
\[ \therefore X = \begin{bmatrix}5 \\ 8 \\ 8\end{bmatrix}\]
Therefore, cost of A variety of pens = Rs 5
Cost of B variety of pens = Rs 8
Cost of C variety of pens = Rs 8
APPEARS IN
RELATED QUESTIONS
Find the value of x, if
\[\begin{vmatrix}3x & 7 \\ 2 & 4\end{vmatrix} = 10\] , find the value of x.
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a + b & 2a + b & 3a + b \\ 2a + b & 3a + b & 4a + b \\ 4a + b & 5a + b & 6a + b\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Prove that
\[\begin{vmatrix}- bc & b^2 + bc & c^2 + bc \\ a^2 + ac & - ac & c^2 + ac \\ a^2 + ab & b^2 + ab & - ab\end{vmatrix} = \left( ab + bc + ca \right)^3\]
Show that
Solve the following determinant equation:
Solve the following determinant equation:
Solve the following determinant equation:
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Prove that :
Prove that
2x − y = − 2
3x + 4y = 3
x+ y = 5
y + z = 3
x + z = 4
3x + y = 5
− 6x − 2y = 9
If A is a singular matrix, then write the value of |A|.
For what value of x, the following matrix is singular?
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
Write the value of
Find the value of the determinant \[\begin{vmatrix}243 & 156 & 300 \\ 81 & 52 & 100 \\ - 3 & 0 & 4\end{vmatrix} .\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
5x + 3y + 7z = 4
3x + 26y + 2z = 9
7x + 2y + 10z = 5
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
Let \[X = \begin{bmatrix}x_1 \\ x_2 \\ x_3\end{bmatrix}, A = \begin{bmatrix}1 & - 1 & 2 \\ 2 & 0 & 1 \\ 3 & 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}3 \\ 1 \\ 4\end{bmatrix}\] . If AX = B, then X is equal to
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
If ` abs((1 + "a"^2 "x", (1 + "b"^2)"x", (1 + "c"^2)"x"),((1 + "a"^2) "x", 1 + "b"^2 "x", (1 + "c"^2) "x"), ((1 + "a"^2) "x", (1 + "b"^2) "x", 1 + "c"^2 "x"))`, then f(x) is apolynomial of degree ____________.
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.