Advertisements
Advertisements
Question
Find the value of x, if
Solution
APPEARS IN
RELATED QUESTIONS
If
If
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
For what value of x the matrix A is singular?
Without expanding, show that the value of the following determinant is zero:
Evaluate :
Prove that
Prove that
Prove the following identities:
Show that x = 2 is a root of the equation
Find the area of the triangle with vertice at the point:
(0, 0), (6, 0) and (4, 3)
Prove that :
Prove that :
2x − y = − 2
3x + 4y = 3
2x + 3y = 10
x + 6y = 4
Given: x + 2y = 1
3x + y = 4
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
3x + y = 5
− 6x − 2y = 9
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
Evaluate:
If
If x, y, z are different from zero and
Let
Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
Let a, b, c be positive real numbers. The following system of equations in x, y and z
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are
If
If the system of linear equations
2x + y – z = 7
x – 3y + 2z = 1
x + 4y + δz = k, where δ, k ∈ R has infinitely many solutions, then δ + k is equal to ______.
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.