English

2y − 3z = 0 X + 3y = − 4 3x + 4y = 3 - Mathematics

Advertisements
Advertisements

Question

2y − 3z = 0
x + 3y = − 4
3x + 4y = 3

Solution

These equations can be written as
0x + 2y − 3z = 0
x + 3y + 0z = − 4
 3x + 4y + 0z = 3

\[D = \begin{vmatrix}0 & 2 & - 3 \\ 1 & 3 & 0 \\ 3 & 4 & 0\end{vmatrix}\] 
\[ = 0(0 - 0) - 2(0 - 0) - 3(4 - 9)\] 
\[ = 15\] 
\[ D_1 = \begin{vmatrix}0 & 2 & - 3 \\ - 4 & 3 & 0 \\ 3 & 4 & 0\end{vmatrix}\] 
\[ = 0(0 - 0) - 2(0 - 0) - 3( - 16 - 9)\] 
\[ = 75\] 
\[ D_2 = \begin{vmatrix}0 & 0 & - 3 \\ 1 & - 4 & 0 \\ 3 & 3 & 0\end{vmatrix}\] 
\[ = 0(0 - 0) - 0(0 - 0) - 3(3 + 12)\] 
\[ = - 45\] 
\[ D_3 = \begin{vmatrix}0 & 2 & 0 \\ 1 & 3 & - 4 \\ 3 & 4 & 3\end{vmatrix}\] 
\[ = 0(9 + 16) - 2(3 + 12) - 0(4 - 9)\] 
\[ = - 30\] 
Now,
\[x = \frac{D_1}{D} = \frac{75}{15} = 5\] 
\[y = \frac{D_2}{D} = \frac{- 45}{15} = - 3\] 
\[z = \frac{D_3}{D} = \frac{- 30}{15} = - 2\] 
\[ \therefore x = 5, y = - 3\text{ and }z = - 2\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.4 [Page 84]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.4 | Q 15 | Page 84

RELATED QUESTIONS

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations

2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


Without expanding, prove that

\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}1 & x & x^3 \\ 1 & b & b^3 \\ 1 & c & c^3\end{vmatrix} = 0, b \neq c\]

 


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


Using determinants, find the area of the triangle with vertices (−3, 5), (3, −6), (7, 2).


Prove that :

\[\begin{vmatrix}1 & a^2 + bc & a^3 \\ 1 & b^2 + ca & b^3 \\ 1 & c^2 + ab & c^3\end{vmatrix} = - \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a^2 + b^2 + c^2 \right)\]

 


Prove that :

\[\begin{vmatrix}x + 4 & x & x \\ x & x + 4 & x \\ x & x & x + 4\end{vmatrix} = 16 \left( 3x + 4 \right)\]

Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1


2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11


If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.


Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]


If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.

 

Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Show that each one of the following systems of linear equation is inconsistent:
4x − 2y = 3
6x − 3y = 5


Given \[A = \begin{bmatrix}2 & 2 & - 4 \\ - 4 & 2 & - 4 \\ 2 & - 1 & 5\end{bmatrix}, B = \begin{bmatrix}1 & - 1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2\end{bmatrix}\] , find BA and use this to solve the system of equations  y + 2z = 7, x − y = 3, 2x + 3y + 4z = 17


3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0


The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5


x + y = 1
x + z = − 6
x − y − 2z = 3


If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.


What is the nature of the given system of equations

`{:(x + 2y = 2),(2x + 3y = 3):}`


The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×