Advertisements
Advertisements
Question
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Solution
The three equations can be expressed as
\[\left( a - 1 \right)x - y - z = 0\]
\[ - x + \left( b - 1 \right)y - z = 0\]
\[ - x - y + \left( c - 1 \right)z = 0\]
Expressing this as a determinant, we get
\[∆ = \begin{vmatrix}\left( a - 1 \right) & - 1 & - 1 \\ - 1 & \left( b - 1 \right) & - 1 \\ - 1 & - 1 & \left( c - 1 \right)\end{vmatrix}\]
If the matrix has a non-trivial solution, then
\[\Rightarrow \left( a - 1 \right)\left[ \left( b - 1 \right)\left( c - 1 \right) - 1 \right] + 1\left[ - \left( c - 1 \right) - 1 \right] - 1\left[ 1 + b - 1 \right] = 0\]
\[ \Rightarrow \left( a - 1 \right)\left[ bc - c - b + 1 - 1 \right] + 1\left[ - c + 1 - 1 \right] - 1\left[ b \right] = 0\]
\[ \Rightarrow \left( a - 1 \right)\left[ bc - b - c \right] - c - b = 0\]
\[ \Rightarrow abc - ab - ac - bc + b + c - b - c = 0\]
\[ \Rightarrow ab + ac + bc = abc\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Prove that
\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]
Show that x = 2 is a root of the equation
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
Prove that :
2x − y = − 2
3x + 4y = 3
3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
Write the value of the determinant
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Write the value of
If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
The prices of three commodities P, Q and R are Rs x, y and z per unit respectively. A purchases 4 units of R and sells 3 units of P and 5 units of Q. B purchases 3 units of Q and sells 2 units of P and 1 unit of R. Cpurchases 1 unit of P and sells 4 units of Q and 6 units of R. In the process A, B and C earn Rs 6000, Rs 5000 and Rs 13000 respectively. If selling the units is positive earning and buying the units is negative earnings, find the price per unit of three commodities by using matrix method.
Two factories decided to award their employees for three values of (a) adaptable tonew techniques, (b) careful and alert in difficult situations and (c) keeping clam in tense situations, at the rate of ₹ x, ₹ y and ₹ z per person respectively. The first factory decided to honour respectively 2, 4 and 3 employees with a total prize money of ₹ 29000. The second factory decided to honour respectively 5, 2 and 3 employees with the prize money of ₹ 30500. If the three prizes per person together cost ₹ 9500, then
i) represent the above situation by matrix equation and form linear equation using matrix multiplication.
ii) Solve these equation by matrix method.
iii) Which values are reflected in the questions?
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If `|(x + a, beta, y),(a, x + beta, y),(a, beta, x + y)|` = 0, then 'x' is equal to
The number of real value of 'x satisfying `|(x, 3x + 2, 2x - 1),(2x - 1, 4x, 3x + 1),(7x - 2, 17x + 6, 12x - 1)|` = 0 is