English

Solve system of linear equations, using matrix method. 2x + y + z = 1 x – 2y – z =32 3y – 5z = 9 - Mathematics

Advertisements
Advertisements

Question

Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9

Sum

Solution

The given equation,

2x + y + z = 1
x - 2y - z = `3/2`
3y - 5z = 9

The equation can be written as a system so X = A-1 B

Where, A `= [(2,1,1),(1,-2,-1),(0,3,-5)], X = [(x),(y),(z)]  and B = [(1),(3/2),(9)]`

`therefore abs A = [(2,1,1),(1,-2,-1),(0,3,-5)]`

`= 2 [10 + 3] - 1 [-5 + 0] + 1 [3 + 0]`

`= 2 xx 13 - 1 xx (-5) + 1 xx 3`

`= 26 + 5 + 3 = 34 ne 0`

The cofactors of the elements of matrix A are as follows:

`A_11 = (-1)^(1 + 1) abs ((-2,-1),(3,-5)) = (-1)^2 [10 + 3] = 1 xx 13 = 13`

`A_12 = (-1)^(1 + 2) abs ((1,-1),(0,-5)) = (- 1)^3 [-5 + 0] = -1 xx (-5) = 5`

`A_13 = (- 1)^(1 + 3) abs ((1,-2),(0,3)) = (-1)^4 [3 + 0] = 1 xx 3 = 3`

`A_21 = (-1)^(2 + 1) abs ((1,1),(3,-5)) = (-1)^3 [-5 -3] = -1 xx (- 8) = 8`

`A_22 = (-1)^(2+2) |(2,1), (0,-5)| = (-5-3) = 8`

`A_23 = (-1)^(2 + 3) abs ((2,1),(0,3)) = (-1)^5 [6 - 0] = -1 xx 6 = - 6`

`A_31 = (-1)^(3 + 1) abs ((1,1),(-2,-1)) = (-1)^4 [-1 + 2] = 1 xx 1 = 1`

`A_32 = (-1)^(3 + 2) abs ((2,1),(1,-1)) = (-1)^5 [-2 -1] = -1 xx (-3) = 3`

`A_33 = (-1)^(3 + 3) abs ((2,1),(1,-2)) = (-1)^6 [-4 -1] = 1 xx (-5) = - 5`

Hence, the matrix made up of the elements of the cofactors = `[(13,5,3),(8,-10,-6),(1,3,-5)]` 

`therefore adj A = [(13,5,3),(8,-10,-6),(1,3,-5)] = [(13,8,1),(5,-10,3),(3,-6,-5)]`

`A^-1 = 1/abs A (adj A)`

`= 1/34 [(13,8,1),(5,-10,3),(3,-6,-5)]`

`therefore X = A^-1 B`

`= 1/34 [(13,8,1),(5,-10,3),(3,-6,-5)] [(1),(3/2),(9)]`

`= 1/34 [(13 + 12 + 9),(5 - 15 + 27),(3 - 9 - 45)]`

`= 1/34 [(34),(17),(-51)] = [(34/34),(17/34),((-51)/34)]`

`=> [(x),(y),(z)] = [(1),(1/2),(-3/2)]`

`=> x = 1, y = 1/2  and z = (-3)/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise 4.6 [Page 136]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 4 Determinants
Exercise 4.6 | Q 11 | Page 136

RELATED QUESTIONS

Examine the consistency of the system of equations.

3x − y − 2z = 2

2y − z = −1

3x − 5y = 3


Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]


Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]


\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


For what value of x the matrix A is singular? 
\[ A = \begin{bmatrix}1 + x & 7 \\ 3 - x & 8\end{bmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}a & h & g \\ h & b & f \\ g & f & c\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}0 & x & y \\ - x & 0 & z \\ - y & - z & 0\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]


Show that

\[\begin{vmatrix}x + 1 & x + 2 & x + a \\ x + 2 & x + 3 & x + b \\ x + 3 & x + 4 & x + c\end{vmatrix} =\text{ 0 where a, b, c are in A . P .}\]

 


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


Find the value of x if the area of ∆ is 35 square cms with vertices (x, 4), (2, −6) and (5, 4).


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.


Find values of k, if area of triangle is 4 square units whose vertices are 

(−2, 0), (0, 4), (0, k)


2x − y = 1
7x − 2y = −7


Prove that :

\[\begin{vmatrix}a + b & b + c & c + a \\ b + c & c + a & a + b \\ c + a & a + b & b + c\end{vmatrix} = 2\begin{vmatrix}a & b & c \\ b & c & a \\ c & a & b\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}a - b - c & 2a & 2a \\ 2b & b - c - a & 2b \\ 2c & 2c & c - a - b\end{vmatrix} = \left( a + b + c \right)^3\]

 


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


3x + ay = 4
2x + ay = 2, a ≠ 0


x + 2y = 5
3x + 6y = 15


If A is a singular matrix, then write the value of |A|.

 

If \[x, y \in \mathbb{R}\], then the determinant 

\[∆ = \begin{vmatrix}\cos x & - \sin x  & 1 \\ \sin x & \cos x & 1 \\ \cos\left( x + y \right) & - \sin\left( x + y \right) & 0\end{vmatrix}\]



Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:
 2x + 6y = 2
3x − z = −8
2x − y + z = −3


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3


Show that each one of the following systems of linear equation is inconsistent:
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3


\[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}7 & 2 & - 6 \\ - 2 & 1 & - 3 \\ - 4 & 2 & 5\end{bmatrix}\], find AB. Hence, solve the system of equations: x − 2y = 10, 2x + y + 3z = 8 and −2y + z = 7

If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13


System of equations x + y = 2, 2x + 2y = 3 has ______


The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.


Let `θ∈(0, π/2)`. If the system of linear equations,

(1 + cos2θ)x + sin2θy + 4sin3θz = 0

cos2θx + (1 + sin2θ)y + 4sin3θz = 0

cos2θx + sin2θy + (1 + 4sin3θ)z = 0

has a non-trivial solution, then the value of θ is

 ______.


The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×