English

Solve the system of the following equations 2x+3y+10z=4 4x-6y+5z=1 6x+9y-20x=2 - Mathematics

Advertisements
Advertisements

Question

Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`

Sum

Solution

The given equation,

`2/x + 3/y + 10/z = 4`

`4/x - 6/y + 5/z = 1`

`6/x + 9/y - 20/z = 2`

Let,`1/x = u, 1/y = v, 1/z = w`

∴ 2u + 3v + 10w = 4

4u - 6v + 5w = 1

6u + 9v - 20w = 2

This can be written as AX = B, where

A = `[(2,3,10),(4,-6,5),(6,9,-20)], X = [(u),(v),(w)], B = [(4),(1),(2)]`

The element Aij is the cofactor of aij.

`A_11 = (-1)^{1 + 1}[(-6,5),(9,-20)] = (-1)^2[120 - 45]`

= `1 xx 75 = 75`

`A_12 = (-1)^{1 + 2}[(4,5),(6,-20)] = (-1)^3[-80 - 30]`

= `-1 xx (-110) = 110`

`A_13 = (-1)^{1 + 3}[(4,-6),(6,9)] = (-1)^4[36 + 36]`

= `1 xx 72 = 72`

`A_21 = (-1)^{2 + 1}[(3,10),(9,-20)] = (-1)^3[-60 - 90]`

= `-1 xx (-150) = 150`

`A_22 = (-1)^{2 + 2}[(2,10),(6,-20)] = (-1)^4[-40 - 60]`

= `1 xx (-100) = -100`

`A_23 = (-1)^{2 + 3}[(2,3),(6,9)] = (-1)^5[18 - 18] = 0`

`A_31 = (-1)^{3 + 1}[(3,10),(-6,5)] = (-1)^4[15 + 60]`

= `1 xx 75 = 75`

`A_32 = (-1)^{3 + 2}[(2,10),(4,5)] = (-1)^5[10 - 40]`

= `-1 xx (-30) = 30`

`A_33 = (-1)^{3 + 3}[(2,3),(4,-6)] = (-1)^6[-12 - 12]`

= `1 xx (-24) = -24`

∴ adj A = `[(75,110,72),(150,-100,0),(75,30,-24)]`

= `[(75,150,75),(110,-100,30),(72,0,-24)]`

|A| = `a_11A_11 + a_12A_12 + a_13A_13`

= `2 xx 75 + 3 xx 110 + 10 xx 72`

= 150 + 330 + 720 = 1200

`A^-1 = 1/|A|(adj A)1/1200[(75,150,75),(110,-100,30),(72,0,-24)]`

X = `A^-1B = 1/1200[(75,150,75),(110,-100,30),(72,0,-24)][(4),(1),(2)]`

`[(u),(v),(w)] = 1/1200[(300 + 150 + 150),(440 - 100 + 60),(288 + 0 - 48)] = 1/12000`

`[(600),(400),(240)] = [(1/2),(1/3),(1/5)]`

∴ `u = 1/2, v = 1/3, w = 1/5`

⇒ `x = 1/u = 2, y = 1/v = 3, z = 1/w = 5`

Hence, the solutions of the system of equations are x = 2, y = 3, z = 5

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Determinants - Exercise 4.7 [Page 142]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 4 Determinants
Exercise 4.7 | Q 16 | Page 142

RELATED QUESTIONS

Solve system of linear equations, using matrix method.

5x + 2y = 4

7x + 3y = 5


Solve the system of linear equations using the matrix method.

2x + 3y + 3z = 5

x − 2y + z = −4

3x − y − 2z = 3


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}x + \lambda & x & x \\ x & x + \lambda & x \\ x & x & x + \lambda\end{vmatrix}\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + a & b & c \\ a & x + b & c \\ a & b & x + c\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3x - 8 & 3 & 3 \\ 3 & 3x - 8 & 3 \\ 3 & 3 & 3x - 8\end{vmatrix} = 0\]

 


Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


Using determinants show that the following points are collinear:

(5, 5), (−5, 1) and (10, 7)


Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


2x − y = 1
7x − 2y = −7


Prove that :

\[\begin{vmatrix}1 & 1 + p & 1 + p + q \\ 2 & 3 + 2p & 4 + 3p + 2q \\ 3 & 6 + 3p & 10 + 6p + 3q\end{vmatrix} = 1\]

 


Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

3x + y + z = 2
2x − 4y + 3z = − 1
4x + y − 3z = − 11


xy = 5
y + z = 3
x + z = 4


2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11


3x + y = 5
− 6x − 2y = 9


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3


A shopkeeper has 3 varieties of pens 'A', 'B' and 'C'. Meenu purchased 1 pen of each variety for a total of Rs 21. Jeevan purchased 4 pens of 'A' variety 3 pens of 'B' variety and 2 pens of 'C' variety for Rs 60. While Shikha purchased 6 pens of 'A' variety, 2 pens of 'B' variety and 3 pens of 'C' variety for Rs 70. Using matrix method, find cost of each variety of pen.

 

If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


Show that  \[\begin{vmatrix}y + z & x & y \\ z + x & z & x \\ x + y & y & z\end{vmatrix} = \left( x + y + z \right) \left( x - z \right)^2\]

 

x + y = 1
x + z = − 6
x − y − 2z = 3


System of equations x + y = 2, 2x + 2y = 3 has ______


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


Solve the following by inversion method 2x + y = 5, 3x + 5y = −3


`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.


Let A = `[(1,sin α,1),(-sin α,1,sin α),(-1,-sin α,1)]`, where 0 ≤ α ≤ 2π, then:


A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is


If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then


For what value of p, is the system of equations:

p3x + (p + 1)3y = (p + 2)3

px + (p + 1)y = p + 2

x + y = 1

consistent?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×