Advertisements
Advertisements
Question
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
Solution
`[(2,3,3),(1,-2,1),(3,-1,-2)] [(x),(y),(z)] = [(5),(-4),(3)]` AX = B
A = `[(2,3,3),(1,-2,1),(3,-1,-2)], X = [(x),(y),(z)]` or B = `[(5),(-4),(3)]`
Now, `abs A = [(2,3,3),(1,-2,1),(3,-1,-2)]`
`= 2 (4 + 1) - 3 (-2 - 3) + 3 (-1 + 6)`
`= 10 + 15 + 15 = 40 ne 0`
`therefore A^-1` exists and hence the given equation has a unique solution.
`A_11 = (-1)^(1 + 1) abs ((-2,1),(-1,-2)) = 4+1 = 5`
`A_12 = (-1)^(1 + 2) abs ((1,1),(3,-2)) = (-2 - 3) = 5`
`A_13 = (-1)^(1 + 3) abs ((1,-2),(3,-1)) = -1 + 6 = 5`
`A_21 = (-1)^(2 + 1) abs ((3,3),(-1,-2)) = -(-6 + 3) = 3`
`A_22 = (-1)^(2 + 2) abs ((2,3),(3,-2)) = -4 - 9 = -13`
`A_23 = (-1)^(2 + 3) abs((2,3),(3,-1)) = -(-2 - 9) = 11`
`A_31 = (-1)^ (3 + 1) abs ((3,3),(-2,1)) = 3 + 6 = 9`
`A_32 = (-1)^(3 + 2) abs ((2,3),(1,1)) = -(2 - 3) = 1`
`A_33 = (-1)^(3 + 3) abs ((2,3),(1, -2)) = -4-3 = -7`
`therefore A^-1 = 1/abs A (Adj A)`
`= 1/40 [(5,5,5),(3,-13,11),(9,1,-7)] = 1/40 [(5,3,9),(5,-13,1),(5,11,-7)]`
`X = A^-1 B`
`=> [(x),(y),(z)] = 1/40 [(5,3,9),(5,-13,1),(5,11,-7)] [(5),(-4),(3)]`
`= 1/40 [(25 - 12 + 27),(25 + 52 + 3),(25 - 44 - 21)]`
`= 1/40 [(40),(80),(-40)] = [(1),(2),(-1)]`
so, x = `1, y =2, or z = -1.`
APPEARS IN
RELATED QUESTIONS
If `|[x+1,x-1],[x-3,x+2]|=|[4,-1],[1,3]|`, then write the value of x.
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Examine the consistency of the system of equations.
x + y + z = 1
2x + 3y + 2z = 2
ax + ay + 2az = 4
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}a & b & c \\ a + 2x & b + 2y & c + 2z \\ x & y & z\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
Prove that:
`[(a, b, c),(a - b, b - c, c - a),(b + c, c + a, a + b)] = a^3 + b^3 + c^3 -3abc`
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
Using determinants, find the equation of the line joining the points
(1, 2) and (3, 6)
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that
3x + y = 19
3x − y = 23
6x + y − 3z = 5
x + 3y − 2z = 5
2x + y + 4z = 8
3x − y + 2z = 6
2x − y + z = 2
3x + 6y + 5z = 20.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If w is an imaginary cube root of unity, find the value of \[\begin{vmatrix}1 & w & w^2 \\ w & w^2 & 1 \\ w^2 & 1 & w\end{vmatrix}\]
If A = [aij] is a 3 × 3 scalar matrix such that a11 = 2, then write the value of |A|.
Find the value of x from the following : \[\begin{vmatrix}x & 4 \\ 2 & 2x\end{vmatrix} = 0\]
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
The value of the determinant
Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
be an identity in x, where a, b, c, d, e are independent of x. Then the value of e is
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
The value of the determinant
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
The sum of three numbers is 2. If twice the second number is added to the sum of first and third, the sum is 1. By adding second and third number to five times the first number, we get 6. Find the three numbers by using matrices.
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
x + y = 1
x + z = − 6
x − y − 2z = 3
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
A set of linear equations is represented by the matrix equation Ax = b. The necessary condition for the existence of a solution for this system is
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in