Advertisements
Advertisements
प्रश्न
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
उत्तर
`[(2,3,3),(1,-2,1),(3,-1,-2)] [(x),(y),(z)] = [(5),(-4),(3)]` AX = B
A = `[(2,3,3),(1,-2,1),(3,-1,-2)], X = [(x),(y),(z)]` or B = `[(5),(-4),(3)]`
Now, `abs A = [(2,3,3),(1,-2,1),(3,-1,-2)]`
`= 2 (4 + 1) - 3 (-2 - 3) + 3 (-1 + 6)`
`= 10 + 15 + 15 = 40 ne 0`
`therefore A^-1` exists and hence the given equation has a unique solution.
`A_11 = (-1)^(1 + 1) abs ((-2,1),(-1,-2)) = 4+1 = 5`
`A_12 = (-1)^(1 + 2) abs ((1,1),(3,-2)) = (-2 - 3) = 5`
`A_13 = (-1)^(1 + 3) abs ((1,-2),(3,-1)) = -1 + 6 = 5`
`A_21 = (-1)^(2 + 1) abs ((3,3),(-1,-2)) = -(-6 + 3) = 3`
`A_22 = (-1)^(2 + 2) abs ((2,3),(3,-2)) = -4 - 9 = -13`
`A_23 = (-1)^(2 + 3) abs((2,3),(3,-1)) = -(-2 - 9) = 11`
`A_31 = (-1)^ (3 + 1) abs ((3,3),(-2,1)) = 3 + 6 = 9`
`A_32 = (-1)^(3 + 2) abs ((2,3),(1,1)) = -(2 - 3) = 1`
`A_33 = (-1)^(3 + 3) abs ((2,3),(1, -2)) = -4-3 = -7`
`therefore A^-1 = 1/abs A (Adj A)`
`= 1/40 [(5,5,5),(3,-13,11),(9,1,-7)] = 1/40 [(5,3,9),(5,-13,1),(5,11,-7)]`
`X = A^-1 B`
`=> [(x),(y),(z)] = 1/40 [(5,3,9),(5,-13,1),(5,11,-7)] [(5),(-4),(3)]`
`= 1/40 [(25 - 12 + 27),(25 + 52 + 3),(25 - 44 - 21)]`
`= 1/40 [(40),(80),(-40)] = [(1),(2),(-1)]`
so, x = `1, y =2, or z = -1.`
APPEARS IN
संबंधित प्रश्न
Solve the system of linear equations using the matrix method.
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1^2 & 2^2 & 3^2 & 4^2 \\ 2^2 & 3^2 & 4^2 & 5^2 \\ 3^2 & 4^2 & 5^2 & 6^2 \\ 4^2 & 5^2 & 6^2 & 7^2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\cos\left( x + y \right) & - \sin\left( x + y \right) & \cos2y \\ \sin x & \cos x & \sin y \\ - \cos x & \sin x & - \cos y\end{vmatrix}\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Without expanding, prove that
\[\begin{vmatrix}a & b & c \\ x & y & z \\ p & q & r\end{vmatrix} = \begin{vmatrix}x & y & z \\ p & q & r \\ a & b & c\end{vmatrix} = \begin{vmatrix}y & b & q \\ x & a & p \\ z & c & r\end{vmatrix}\]
Solve the following determinant equation:
Using determinants prove that the points (a, b), (a', b') and (a − a', b − b') are collinear if ab' = a'b.
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that
9x + 5y = 10
3y − 2x = 8
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
An automobile company uses three types of steel S1, S2 and S3 for producing three types of cars C1, C2and C3. Steel requirements (in tons) for each type of cars are given below :
Cars C1 |
C2 | C3 | |
Steel S1 | 2 | 3 | 4 |
S2 | 1 | 1 | 2 |
S3 | 3 | 2 | 1 |
Using Cramer's rule, find the number of cars of each type which can be produced using 29, 13 and 16 tons of steel of three types respectively.
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
The value of the determinant
The value of the determinant \[\begin{vmatrix}x & x + y & x + 2y \\ x + 2y & x & x + y \\ x + y & x + 2y & x\end{vmatrix}\] is
If \[\begin{vmatrix}a & p & x \\ b & q & y \\ c & r & z\end{vmatrix} = 16\] , then the value of \[\begin{vmatrix}p + x & a + x & a + p \\ q + y & b + y & b + q \\ r + z & c + z & c + r\end{vmatrix}\] is
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 3y = 5
6x + 9y = 15
Show that each one of the following systems of linear equation is inconsistent:
2x + 5y = 7
6x + 15y = 13
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
2x − y + 2z = 0
5x + 3y − z = 0
x + 5y − 5z = 0
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
If `|(2x, 5),(8, x)| = |(6, 5),(8, 3)|`, then find x
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
If the following equations
x + y – 3 = 0
(1 + λ)x + (2 + λ)y – 8 = 0
x – (1 + λ)y + (2 + λ) = 0
are consistent then the value of λ can be ______.