हिंदी

Prove that : ∣ ∣ ∣ ∣ ∣ z x y z 2 x 2 y 2 z 4 x 4 y 4 ∣ ∣ = ∣ ∣ x y z x 2 y 2 z 2 x 4 y 4 z 4 ∣ ∣ = ∣ ∣ x 2 y 2 z 2 x 4 y 4 z 4 x y z ∣ ∣ ∣ ∣ ∣ = x y z ( x − y ) ( y − z ) ( z − x ) ( x + y + z ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that :

\[\begin{vmatrix}z & x & y \\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4\end{vmatrix} = \begin{vmatrix}x & y & z \\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4\end{vmatrix} = \begin{vmatrix}x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z\end{vmatrix} = xyz \left( x - y \right) \left( y - z \right) \left( z - x \right) \left( x + y + z \right) .\]

 

उत्तर

\[Let \Delta_1 = \begin{vmatrix} z & x & y\\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4 \end{vmatrix}, \Delta_2 = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix}, \Delta_3 = \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z \end{vmatrix} \text{ and }\Delta_4 = xyz\left( x - y \right)\left( y - z \right)\left( z - x \right) \left( x + y + z \right)\]
Now,
\[ \Delta_{1 =} \begin{vmatrix} z & x & y\\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4 \end{vmatrix}\]
Using the property that if two rows ( or columns ) of a determinant are interchanged, the value of the determinant becomes negetive, we get

\[ \Rightarrow \Delta_1 = \left( - 1 \right) \begin{vmatrix} x & z & y\\ x^2 & z^2 & y^2 \\ x^4 & z^4 & y^4 \end{vmatrix} \left[ \because C_1 \leftrightarrow C_2 \right]\]
\[ = \left( - 1 \right)\left( - 1 \right)\begin{vmatrix} x & y & z\\x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix} \left[ \because C_2 \leftrightarrow C_3 \right]\]

\[ = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix} = \Delta_2 . . . (1)\]
\[ = \left( - 1 \right) \begin{vmatrix} x^2 & y^2 & z^2 \\x & y & z\\ x^4 & y^4 & z^4 \end{vmatrix} \left[\text{ Applying }R_1 \leftrightarrow R_2 \right]\]
\[ = \left( - 1 \right) \left( - 1 \right) \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\x & y^{} & z \end{vmatrix} \left[\text{ Applying }R_2 \leftrightarrow R_3 \right] \]
\[ = \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\x & y^{} & z \end{vmatrix} = \Delta_3 . . . (2)\]
\[Thus, \]

\[ \Delta_1 = \Delta_2 = \Delta_3 \left[\text{ From eqs }. (1)\text{ and }(2) \right]\]
\[∆_2 = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix}\] 
\[ = xyz \begin{vmatrix} 1 & 1 & 1\\x & y^{} & z\\ x^3 & y^3 & z^3 \end{vmatrix} \left[\text{ Taking out common factor x from } C_{1 ,}\text{ y from }C_2\text{ and z from }C_3 \right]\] 
\[ = xyz\begin{vmatrix} 0 & 0 & 1\\ x - y & y - z^{} & z\\ x^3 - y^3 & y^3 - z^3 & z^3 \end{vmatrix} \left[\text{ Applying }C \to C_1 \hspace{0.167em} - C_2\text{ and }C_2 \to C_2 - C_3 \right]\] 
\[ = xyz\left( x - y \right) \left( y - z \right) \begin{vmatrix} 0 & 0 & 1\\1 & 1 & z\\ x^2 + 2xy + y^2 & y^2 + 2yz + z^2 & z^3 \end{vmatrix} \left[ \because \left( a^3 - b^3 \right) = \left( a - b \right)\left( a^2 + ab + b^2 \right) \right] \left[\text{ Taking out common factor }\left( x - y \right)\text{ from }C_1\text{ and }\left( y - z \right)\text{ from }C_2 \right]\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ 1 \times \begin{vmatrix} 1 & 1 \\ x^2 + xy + y^2 & y^2 + yz + z^2 \end{vmatrix} \right\} \left[\text{ Expanding along }R_1 \right]\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ y^2 + yz + z^2 - x^2 - xy - y^2 \right\}\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ yz - xy + z^2 - x^2 \right\}\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ y\left( z - x \right) + \left( z - x \right)\left( z + x \right) \right\}\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left( z - x \right)\left( y + x + z \right)\] 
\[ = xyz\left( x - y \right) \left( y - z \right)\left( z - x \right)\left( x + y + z \right)\] 
\[ = ∆_4 \] 
\[Thus, \] 
\[ ∆_1 = ∆_2 = ∆_3 = ∆_4 \] 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Determinants - Exercise 6.2 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 6 Determinants
Exercise 6.2 | Q 19 | पृष्ठ ५९

संबंधित प्रश्न

Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Solve system of linear equations, using matrix method.

2x + y + z = 1

x – 2y – z =` 3/2`

3y – 5z = 9


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


Evaluate the following determinant:

\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]


\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}1 & 1 & x \\ p + 1 & p + 1 & p + x \\ 3 & x + 1 & x + 2\end{vmatrix} = 0\]

x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix} = \begin{vmatrix}1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2\end{vmatrix}\]

 


Prove that :

\[\begin{vmatrix}x + 4 & x & x \\ x & x + 4 & x \\ x & x & x + 4\end{vmatrix} = 16 \left( 3x + 4 \right)\]

2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11


2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2


Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0


Find the value of the determinant 
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]

 


Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].


Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]


Using the factor theorem it is found that a + bb + c and c + a are three factors of the determinant 

\[\begin{vmatrix}- 2a & a + b & a + c \\ b + a & - 2b & b + c \\ c + a & c + b & - 2c\end{vmatrix}\]
The other factor in the value of the determinant is


\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]


The value of the determinant  

\[\begin{vmatrix}a - b & b + c & a \\ b - c & c + a & b \\ c - a & a + b & c\end{vmatrix}\]




Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


There are two values of a which makes the determinant  \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\]  equal to 86. The sum of these two values is

 


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30


Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. xy and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of xy and z. What values are described in this equations?


Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.


The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is


For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4


The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×