Advertisements
Advertisements
प्रश्न
Prove that :
उत्तर
\[Let \Delta_1 = \begin{vmatrix} z & x & y\\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4 \end{vmatrix}, \Delta_2 = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix}, \Delta_3 = \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\ x & y & z \end{vmatrix} \text{ and }\Delta_4 = xyz\left( x - y \right)\left( y - z \right)\left( z - x \right) \left( x + y + z \right)\]
Now,
\[ \Delta_{1 =} \begin{vmatrix} z & x & y\\ z^2 & x^2 & y^2 \\ z^4 & x^4 & y^4 \end{vmatrix}\]
Using the property that if two rows ( or columns ) of a determinant are interchanged, the value of the determinant becomes negetive, we get
\[ \Rightarrow \Delta_1 = \left( - 1 \right) \begin{vmatrix} x & z & y\\ x^2 & z^2 & y^2 \\ x^4 & z^4 & y^4 \end{vmatrix} \left[ \because C_1 \leftrightarrow C_2 \right]\]
\[ = \left( - 1 \right)\left( - 1 \right)\begin{vmatrix} x & y & z\\x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix} \left[ \because C_2 \leftrightarrow C_3 \right]\]
\[ = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix} = \Delta_2 . . . (1)\]
\[ = \left( - 1 \right) \begin{vmatrix} x^2 & y^2 & z^2 \\x & y & z\\ x^4 & y^4 & z^4 \end{vmatrix} \left[\text{ Applying }R_1 \leftrightarrow R_2 \right]\]
\[ = \left( - 1 \right) \left( - 1 \right) \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\x & y^{} & z \end{vmatrix} \left[\text{ Applying }R_2 \leftrightarrow R_3 \right] \]
\[ = \begin{vmatrix} x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \\x & y^{} & z \end{vmatrix} = \Delta_3 . . . (2)\]
\[Thus, \]
\[ \Delta_1 = \Delta_2 = \Delta_3 \left[\text{ From eqs }. (1)\text{ and }(2) \right]\]
\[∆_2 = \begin{vmatrix} x & y & z\\ x^2 & y^2 & z^2 \\ x^4 & y^4 & z^4 \end{vmatrix}\]
\[ = xyz \begin{vmatrix} 1 & 1 & 1\\x & y^{} & z\\ x^3 & y^3 & z^3 \end{vmatrix} \left[\text{ Taking out common factor x from } C_{1 ,}\text{ y from }C_2\text{ and z from }C_3 \right]\]
\[ = xyz\begin{vmatrix} 0 & 0 & 1\\ x - y & y - z^{} & z\\ x^3 - y^3 & y^3 - z^3 & z^3 \end{vmatrix} \left[\text{ Applying }C \to C_1 \hspace{0.167em} - C_2\text{ and }C_2 \to C_2 - C_3 \right]\]
\[ = xyz\left( x - y \right) \left( y - z \right) \begin{vmatrix} 0 & 0 & 1\\1 & 1 & z\\ x^2 + 2xy + y^2 & y^2 + 2yz + z^2 & z^3 \end{vmatrix} \left[ \because \left( a^3 - b^3 \right) = \left( a - b \right)\left( a^2 + ab + b^2 \right) \right] \left[\text{ Taking out common factor }\left( x - y \right)\text{ from }C_1\text{ and }\left( y - z \right)\text{ from }C_2 \right]\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ 1 \times \begin{vmatrix} 1 & 1 \\ x^2 + xy + y^2 & y^2 + yz + z^2 \end{vmatrix} \right\} \left[\text{ Expanding along }R_1 \right]\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ y^2 + yz + z^2 - x^2 - xy - y^2 \right\}\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ yz - xy + z^2 - x^2 \right\}\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left\{ y\left( z - x \right) + \left( z - x \right)\left( z + x \right) \right\}\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left( z - x \right)\left( y + x + z \right)\]
\[ = xyz\left( x - y \right) \left( y - z \right)\left( z - x \right)\left( x + y + z \right)\]
\[ = ∆_4 \]
\[Thus, \]
\[ ∆_1 = ∆_2 = ∆_3 = ∆_4 \]
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 3y = 5
2x + 6y = 8
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate the following determinant:
\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b & c \\ c & a & b \\ b & c & a\end{vmatrix}\]
\[\begin{vmatrix}0 & b^2 a & c^2 a \\ a^2 b & 0 & c^2 b \\ a^2 c & b^2 c & 0\end{vmatrix} = 2 a^3 b^3 c^3\]
\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]
Solve the following determinant equation:
Solve the following determinant equation:
x − 2y = 4
−3x + 5y = −7
Prove that :
Prove that :
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
Find the value of the determinant
\[\begin{bmatrix}101 & 102 & 103 \\ 104 & 105 & 106 \\ 107 & 108 & 109\end{bmatrix}\]
Find the value of the determinant \[\begin{vmatrix}2^2 & 2^3 & 2^4 \\ 2^3 & 2^4 & 2^5 \\ 2^4 & 2^5 & 2^6\end{vmatrix}\].
Find the maximum value of \[\begin{vmatrix}1 & 1 & 1 \\ 1 & 1 + \sin \theta & 1 \\ 1 & 1 & 1 + \cos \theta\end{vmatrix}\]
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
\[\begin{vmatrix}\log_3 512 & \log_4 3 \\ \log_3 8 & \log_4 9\end{vmatrix} \times \begin{vmatrix}\log_2 3 & \log_8 3 \\ \log_3 4 & \log_3 4\end{vmatrix}\]
The value of the determinant
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Show that the following systems of linear equations is consistent and also find their solutions:
x + y + z = 6
x + 2y + 3z = 14
x + 4y + 7z = 30
Two institutions decided to award their employees for the three values of resourcefulness, competence and determination in the form of prices at the rate of Rs. x, y and z respectively per person. The first institution decided to award respectively 4, 3 and 2 employees with a total price money of Rs. 37000 and the second institution decided to award respectively 5, 3 and 4 employees with a total price money of Rs. 47000. If all the three prices per person together amount to Rs. 12000 then using matrix method find the value of x, y and z. What values are described in this equations?
Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & 1\end{bmatrix}\begin{bmatrix}x \\ - 1 \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\] , find x, y and z.
The number of solutions of the system of equations
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
is
For the system of equations:
x + 2y + 3z = 1
2x + y + 3z = 2
5x + 5y + 9z = 4
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.
If A = `[(1,-1,0),(2,3,4),(0,1,2)]` and B = `[(2,2,-4),(-4,2,-4),(2,-1,5)]`, then: