Advertisements
Advertisements
प्रश्न
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
उत्तर
Using the equations we get
\[D = \begin{vmatrix}2 & 1 & - 2 \\ 1 & - 2 & 1 \\ 5 & - 5 & 1\end{vmatrix}\]
\[ \Rightarrow 2\left( - 2 + 5 \right) - 1\left( 1 - 5 \right) - 2\left( - 5 + 10 \right) = 0\]
\[ D_1 = \begin{vmatrix}4 & 1 & - 2 \\ - 2 & - 2 & 1 \\ - 2 & - 5 & 1\end{vmatrix}\]
\[ \Rightarrow 4\left( - 2 + 5 \right) - 1\left( - 2 + 2 \right) - 2\left( 10 - 4 \right) = 0\]
\[ D_2 = \begin{vmatrix}2 & 4 & - 2 \\ 1 & - 2 & 1 \\ 5 & - 2 & 1\end{vmatrix}\]
\[ \Rightarrow 2\left( - 2 + 2 \right) - 4\left( 1 - 5 \right) - 2\left( - 2 + 10 \right) = 0\]
\[ D_3 = \begin{vmatrix}2 & 1 & 4 \\ 1 & - 2 & - 2 \\ 5 & - 5 & - 2\end{vmatrix}\]
\[ \Rightarrow 2\left( 4 - 10 \right) - 1\left( - 2 + 10 \right) + 4\left( - 5 + 10 \right) = 0\]
\[\therefore D = D_1 = D_2 = 0\]
Hence, the system of linear equations has infinitely many solutions.
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate the following determinant:
\[\begin{vmatrix}\cos \theta & - \sin \theta \\ \sin \theta & \cos \theta\end{vmatrix}\]
Evaluate
\[∆ = \begin{vmatrix}0 & \sin \alpha & - \cos \alpha \\ - \sin \alpha & 0 & \sin \beta \\ \cos \alpha & - \sin \beta & 0\end{vmatrix}\]
If \[A = \begin{bmatrix}2 & 5 \\ 2 & 1\end{bmatrix} \text{ and } B = \begin{bmatrix}4 & - 3 \\ 2 & 5\end{bmatrix}\] , verify that |AB| = |A| |B|.
Find the value of x, if
\[\begin{vmatrix}2 & 4 \\ 5 & 1\end{vmatrix} = \begin{vmatrix}2x & 4 \\ 6 & x\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1/a & a^2 & bc \\ 1/b & b^2 & ac \\ 1/c & c^2 & ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\left( 2^x + 2^{- x} \right)^2 & \left( 2^x - 2^{- x} \right)^2 & 1 \\ \left( 3^x + 3^{- x} \right)^2 & \left( 3^x - 3^{- x} \right)^2 & 1 \\ \left( 4^x + 4^{- x} \right)^2 & \left( 4^x - 4^{- x} \right)^2 & 1\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Using determinants show that the following points are collinear:
(5, 5), (−5, 1) and (10, 7)
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that :
\[\begin{vmatrix}\left( b + c \right)^2 & a^2 & bc \\ \left( c + a \right)^2 & b^2 & ca \\ \left( a + b \right)^2 & c^2 & ab\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right) \left( a + b + c \right) \left( a^2 + b^2 + c^2 \right)\]
Prove that :
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
A salesman has the following record of sales during three months for three items A, B and C which have different rates of commission
Month | Sale of units | Total commission drawn (in Rs) |
||
A | B | C | ||
Jan | 90 | 100 | 20 | 800 |
Feb | 130 | 50 | 40 | 900 |
March | 60 | 100 | 30 | 850 |
Find out the rates of commission on items A, B and C by using determinant method.
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
If I3 denotes identity matrix of order 3 × 3, write the value of its determinant.
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If a, b, c are distinct, then the value of x satisfying \[\begin{vmatrix}0 & x^2 - a & x^3 - b \\ x^2 + a & 0 & x^2 + c \\ x^4 + b & x - c & 0\end{vmatrix} = 0\text{ is }\]
If a, b, c are in A.P., then the determinant
\[\begin{vmatrix}x + 2 & x + 3 & x + 2a \\ x + 3 & x + 4 & x + 2b \\ x + 4 & x + 5 & x + 2c\end{vmatrix}\]
The number of distinct real roots of \[\begin{vmatrix}cosec x & \sec x & \sec x \\ \sec x & cosec x & \sec x \\ \sec x & \sec x & cosec x\end{vmatrix} = 0\] lies in the interval
\[- \frac{\pi}{4} \leq x \leq \frac{\pi}{4}\]
If \[x, y \in \mathbb{R}\], then the determinant
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Solve the following system of equations by matrix method:
2x + y + z = 2
x + 3y − z = 5
3x + y − 2z = 6
Solve the following system of equations by matrix method:
x + y + z = 6
x + 2z = 7
3x + y + z = 12
3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
If A = `[(1, -1, 2),(3, 0, -2),(1, 0, 3)]`, verify that A(adj A) = (adj A)A
The cost of 4 dozen pencils, 3 dozen pens and 2 dozen erasers is ₹ 60. The cost of 2 dozen pencils, 4 dozen pens and 6 dozen erasers is ₹ 90. Whereas the cost of 6 dozen pencils, 2 dozen pens and 3 dozen erasers is ₹ 70. Find the cost of each item per dozen by using matrices
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?
If c < 1 and the system of equations x + y – 1 = 0, 2x – y – c = 0 and – bx+ 3by – c = 0 is consistent, then the possible real values of b are
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`