Advertisements
Advertisements
प्रश्न
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
उत्तर
The given system of equations can be written in matrix form as follows:
\[\begin{bmatrix}3 & 4 \\ 1 & - 1\end{bmatrix} \binom{x}{y} = \binom{5}{ - 3}\]
\[AX=B\]
Here,
\[A = \begin{bmatrix}3 & 4 \\ 1 & - 1\end{bmatrix}, X = \binom{x}{y}\text{ and }B = \binom{5}{ - 3}\]
Now,
\[\left| A \right| = \begin{bmatrix}3 & 4 \\ 1 & - 1\end{bmatrix} \]
\[ = - 3 - 4\]
\[ = - 7 \neq 0\]
\[\text{ So, the given system has a unique solution given by }X = A^{- 1} B . \]
\[ {\text{ Let }C}_{ij} {\text{be the cofactors of the elements a}}_{ij}\text{ in }A=\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \left( - 1 \right) = - 1, C_{12} = \left( - 1 \right)^{1 + 2} \left( 1 \right) = - 1\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \left( 4 \right) = - 4, C_{22} = \left( - 1 \right)^{2 + 2} \left( 3 \right) = 3\]
\[adj A = \begin{bmatrix}- 1 & - 1 \\ - 4 & 3\end{bmatrix}^T = \begin{bmatrix}- 1 & - 4 \\ - 1 & 3\end{bmatrix}\]
\[ A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 7}\begin{bmatrix}- 1 & - 4 \\ - 1 & 3\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ = \frac{1}{- 7}\begin{bmatrix}- 1 & - 4 \\ - 1 & 3\end{bmatrix}\binom{5}{ - 3}\]
\[ = \frac{1}{- 7}\binom{ - 5 + 12}{ - 5 - 9}\]
\[ \Rightarrow \binom{x}{y} = \binom{\frac{7}{- 7}}{\frac{- 14}{- 7}}\]
\[ \therefore x = - 1\text{ and }y = 2\]
APPEARS IN
संबंधित प्रश्न
Solve system of linear equations, using matrix method.
2x – y = –2
3x + 4y = 3
Solve the system of linear equations using the matrix method.
2x + 3y + 3z = 5
x − 2y + z = −4
3x − y − 2z = 3
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}a + x & y & z \\ x & a + y & z \\ x & y & a + z\end{vmatrix}\]
Solve the following determinant equation:
Solve the following determinant equation:
Find the area of the triangle with vertice at the point:
(−1, −8), (−2, −3) and (3, 2)
If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.
If the points (3, −2), (x, 2), (8, 8) are collinear, find x using determinant.
Prove that :
Prove that :
Prove that :
Prove that :
2x + 3y = 10
x + 6y = 4
5x + 7y = − 2
4x + 6y = − 3
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
Solve each of the following system of homogeneous linear equations.
3x + y + z = 0
x − 4y + 3z = 0
2x + 5y − 2z = 0
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.
If \[A = \begin{bmatrix}\cos\theta & \sin\theta \\ - \sin\theta & \cos\theta\end{bmatrix}\] , then for any natural number, find the value of Det(An).
If \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5
Two schools P and Q want to award their selected students on the values of Discipline, Politeness and Punctuality. The school P wants to award ₹x each, ₹y each and ₹z each the three respectively values to its 3, 2 and 1 students with a total award money of ₹1,000. School Q wants to spend ₹1,500 to award its 4, 1 and 3 students on the respective values (by giving the same award money for three values as before). If the total amount of awards for one prize on each value is ₹600, using matrices, find the award money for each value. Apart from the above three values, suggest one more value for awards.
x + y + z = 0
x − y − 5z = 0
x + 2y + 4z = 0
Consider the system of equations:
a1x + b1y + c1z = 0
a2x + b2y + c2z = 0
a3x + b3y + c3z = 0,
if \[\begin{vmatrix}a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3\end{vmatrix}\]= 0, then the system has
The existence of the unique solution of the system of equations:
x + y + z = λ
5x − y + µz = 10
2x + 3y − z = 6
depends on
On her birthday Seema decided to donate some money to children of an orphanage home. If there were 8 children less, everyone would have got ₹ 10 more. However, if there were 16 children more, everyone would have got ₹ 10 less. Using the matrix method, find the number of children and the amount distributed by Seema. What values are reflected by Seema’s decision?
System of equations x + y = 2, 2x + 2y = 3 has ______
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
`abs ((2"xy", "x"^2, "y"^2),("x"^2, "y"^2, 2"xy"),("y"^2, 2"xy", "x"^2)) =` ____________.
The value (s) of m does the system of equations 3x + my = m and 2x – 5y = 20 has a solution satisfying the conditions x > 0, y > 0.
What is the nature of the given system of equations
`{:(x + 2y = 2),(2x + 3y = 3):}`
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is
The number of real values λ, such that the system of linear equations 2x – 3y + 5z = 9, x + 3y – z = –18 and 3x – y + (λ2 – |λ|z) = 16 has no solution, is ______.