Advertisements
Advertisements
प्रश्न
Prove that :
उत्तर
\[\text{ Let LHS }= \Delta = \begin{vmatrix} a^2 & a^2 - \left( b - c \right)^2 & bc\\ b^2 & b^2 - \left( c - a \right)^2 & ca\\ c^2 & c^2 - \left( a - b \right)^2 & ab \end{vmatrix}\]
\[ \Rightarrow ∆ = \begin{vmatrix} a^2 & - \left( b - c \right)^2 & bc\\ b^2 & - \left( c - a \right)^2 & ca\\ c^2 & - \left( a - b \right)^2 & ab \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_1 \right]\]
\[ = \left( - 1 \right)\begin{vmatrix} a^2 & \left( b - c \right)^2 & bc\\ b^2 & \left( c - a \right)^2 & ca\\ c^2 & \left( a - b \right)^2 & ab \end{vmatrix}\]
\[ = - \begin{vmatrix} a^2 & b^2 + c^2 & bc\\ b^2 & c^2 + a^2 & ca\\ c^2 & a^2 + b^2 & ab \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - 2 C_3 \right]\]
\[ = - \begin{vmatrix} a^2 + b^2 + c^2 & b^2 + c^2 & bc\\ b^2 + c^2 + a^2 & c^2 + a^2 & ca\\ c^2 + a^2 + b^2 & a^2 + b^2 & ab \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 + C_2 \right]\]
\[ = - \left( a^2 + b^2 + c^2 \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\1 & c^2 + a^2 & ca\\1 & a^2 + b^2 & ab \end{vmatrix}\]
\[ = - \left( a^2 + b^2 + c^2 \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\0 & \left( c^2 + a^2 \right) - \left( b^2 + c^2 \right) & ca - bc\\0 & \left( a^2 + b^2 \right) - \left( b^2 + c^2 \right) & ab - bc \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \text{ and }R_3 \to R_3 - R_1 \right]\]
\[ = \left( \left( a^2 + b^2 + c^2 \right) \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\0 & a^2 - b^2 & c\left( a - b \right)\\0 & a^2 - c^2 & b \left( a - c \right) \end{vmatrix}\]
\[ = - \left( a^2 + b^2 + c^2 \right)\left( a - b^{} \right)\left( a - c \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\0 & a + b^{} & c\\0 & a^{} + c^{} & b \end{vmatrix} \left[\text{ Taking }\left( a - b \right)\text{ common from }R_2\text{ and }\left( a - c \right)\text{ common from }R_3 \right]\]
\[ = \left( a^2 + b^2 + c^2 \right)\left( a - b^{} \right)\left( c - a \right) \times \left\{ 1 \times \begin{vmatrix} a + b^{} & c\\ a^{} + c^{} & b \end{vmatrix} \right\} \left[ \because \left( c - a \right) = - \left( a - c \right) \right] \left[\text{ Expanding along }C_1 \right]\]
\[ = \left( a^2 + b^2 + c^2 \right)\left( a - b^{} \right) \left( c - a \right) \left( ab + b^2 - ac - c^2 \right) \]
\[= \left( a^2 + b^2 + c^2 \right)\left( a - b \right)\left( c - a \right)\left\{ a\left( b - c \right) + \left( b + c \right)\left( b - c \right) \right\}\]
\[ = \left( a - b \right)\left( c - a \right)\left( b - c \right)\left( a + b + c \right)\left( a^2 + b^2 + c^2 \right)\]
= RHS
Hence proved
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Examine the consistency of the system of equations.
3x − y − 2z = 2
2y − z = −1
3x − 5y = 3
Solve system of linear equations, using matrix method.
2x + y + z = 1
x – 2y – z =` 3/2`
3y – 5z = 9
Evaluate the following determinant:
\[\begin{vmatrix}x & - 7 \\ x & 5x + 1\end{vmatrix}\]
If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.
Find the integral value of x, if \[\begin{vmatrix}x^2 & x & 1 \\ 0 & 2 & 1 \\ 3 & 1 & 4\end{vmatrix} = 28 .\]
For what value of x the matrix A is singular?
\[A = \begin{bmatrix}x - 1 & 1 & 1 \\ 1 & x - 1 & 1 \\ 1 & 1 & x - 1\end{bmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & 43 & 6 \\ 7 & 35 & 4 \\ 3 & 17 & 2\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
\[\begin{vmatrix}b^2 + c^2 & ab & ac \\ ba & c^2 + a^2 & bc \\ ca & cb & a^2 + b^2\end{vmatrix} = 4 a^2 b^2 c^2\]
Prove the following identity:
\[\begin{vmatrix}2y & y - z - x & 2y \\ 2z & 2z & z - x - y \\ x - y - z & 2x & 2x\end{vmatrix} = \left( x + y + z \right)^3\]
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
2x − y = − 2
3x + 4y = 3
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{ and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
If \[A = \begin{bmatrix}1 & 2 \\ 3 & - 1\end{bmatrix}\text{ and B} = \begin{bmatrix}1 & - 4 \\ 3 & - 2\end{bmatrix},\text{ find }|AB|\]
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
If \[\begin{vmatrix}2x + 5 & 3 \\ 5x + 2 & 9\end{vmatrix} = 0\]
Evaluate: \[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
There are two values of a which makes the determinant \[∆ = \begin{vmatrix}1 & - 2 & 5 \\ 2 & a & - 1 \\ 0 & 4 & 2a\end{vmatrix}\] equal to 86. The sum of these two values is
Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0
Solve the following system of equations by matrix method:
x − y + 2z = 7
3x + 4y − 5z = −5
2x − y + 3z = 12
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & - 1 & 0 \\ 0 & 0 & - 1\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}1 \\ 0 \\ 1\end{bmatrix}\], find x, y and z.
Write the value of `|(a-b, b- c, c-a),(b-c, c-a, a-b),(c-a, a-b, b-c)|`
Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
If the system of equations x + ky - z = 0, 3x - ky - z = 0 & x - 3y + z = 0 has non-zero solution, then k is equal to ____________.
If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.
Choose the correct option:
If a, b, c are in A.P. then the determinant `[(x + 2, x + 3, x + 2a),(x + 3, x + 4, x + 2b),(x + 4, x + 5, x + 2c)]` is
Let P = `[(-30, 20, 56),(90, 140, 112),(120, 60, 14)]` and A = `[(2, 7, ω^2),(-1, -ω, 1),(0, -ω, -ω + 1)]` where ω = `(-1 + isqrt(3))/2`, and I3 be the identity matrix of order 3. If the determinant of the matrix (P–1AP – I3)2 is αω2, then the value of α is equal to ______.