Advertisements
Advertisements
प्रश्न
Prove that :
उत्तर
\[\text{ Let LHS }= \Delta = \begin{vmatrix} a^2 & a^2 - \left( b - c \right)^2 & bc\\ b^2 & b^2 - \left( c - a \right)^2 & ca\\ c^2 & c^2 - \left( a - b \right)^2 & ab \end{vmatrix}\]
\[ \Rightarrow ∆ = \begin{vmatrix} a^2 & - \left( b - c \right)^2 & bc\\ b^2 & - \left( c - a \right)^2 & ca\\ c^2 & - \left( a - b \right)^2 & ab \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - C_1 \right]\]
\[ = \left( - 1 \right)\begin{vmatrix} a^2 & \left( b - c \right)^2 & bc\\ b^2 & \left( c - a \right)^2 & ca\\ c^2 & \left( a - b \right)^2 & ab \end{vmatrix}\]
\[ = - \begin{vmatrix} a^2 & b^2 + c^2 & bc\\ b^2 & c^2 + a^2 & ca\\ c^2 & a^2 + b^2 & ab \end{vmatrix} \left[\text{ Applying }C_2 \to C_2 - 2 C_3 \right]\]
\[ = - \begin{vmatrix} a^2 + b^2 + c^2 & b^2 + c^2 & bc\\ b^2 + c^2 + a^2 & c^2 + a^2 & ca\\ c^2 + a^2 + b^2 & a^2 + b^2 & ab \end{vmatrix} \left[\text{ Applying }C_1 \to C_1 + C_2 \right]\]
\[ = - \left( a^2 + b^2 + c^2 \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\1 & c^2 + a^2 & ca\\1 & a^2 + b^2 & ab \end{vmatrix}\]
\[ = - \left( a^2 + b^2 + c^2 \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\0 & \left( c^2 + a^2 \right) - \left( b^2 + c^2 \right) & ca - bc\\0 & \left( a^2 + b^2 \right) - \left( b^2 + c^2 \right) & ab - bc \end{vmatrix} \left[\text{ Applying }R_2 \to R_2 - R_1 \text{ and }R_3 \to R_3 - R_1 \right]\]
\[ = \left( \left( a^2 + b^2 + c^2 \right) \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\0 & a^2 - b^2 & c\left( a - b \right)\\0 & a^2 - c^2 & b \left( a - c \right) \end{vmatrix}\]
\[ = - \left( a^2 + b^2 + c^2 \right)\left( a - b^{} \right)\left( a - c \right)\begin{vmatrix} 1 & b^2 + c^2 & bc\\0 & a + b^{} & c\\0 & a^{} + c^{} & b \end{vmatrix} \left[\text{ Taking }\left( a - b \right)\text{ common from }R_2\text{ and }\left( a - c \right)\text{ common from }R_3 \right]\]
\[ = \left( a^2 + b^2 + c^2 \right)\left( a - b^{} \right)\left( c - a \right) \times \left\{ 1 \times \begin{vmatrix} a + b^{} & c\\ a^{} + c^{} & b \end{vmatrix} \right\} \left[ \because \left( c - a \right) = - \left( a - c \right) \right] \left[\text{ Expanding along }C_1 \right]\]
\[ = \left( a^2 + b^2 + c^2 \right)\left( a - b^{} \right) \left( c - a \right) \left( ab + b^2 - ac - c^2 \right) \]
\[= \left( a^2 + b^2 + c^2 \right)\left( a - b \right)\left( c - a \right)\left\{ a\left( b - c \right) + \left( b + c \right)\left( b - c \right) \right\}\]
\[ = \left( a - b \right)\left( c - a \right)\left( b - c \right)\left( a + b + c \right)\left( a^2 + b^2 + c^2 \right)\]
= RHS
Hence proved
APPEARS IN
संबंधित प्रश्न
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Examine the consistency of the system of equations.
2x − y = 5
x + y = 4
\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]
Without expanding, show that the value of the following determinant is zero:
\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]
\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]
Show that
Solve the following determinant equation:
Solve the following determinant equation:
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
x + 2y = 5
3x + 6y = 15
2x + y − 2z = 4
x − 2y + z = − 2
5x − 5y + z = − 2
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
Write the value of the determinant
\[\begin{bmatrix}2 & 3 & 4 \\ 2x & 3x & 4x \\ 5 & 6 & 8\end{bmatrix} .\]
State whether the matrix
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.
Find the value of the determinant
\[\begin{bmatrix}4200 & 4201 \\ 4205 & 4203\end{bmatrix}\]
Evaluate \[\begin{vmatrix}4785 & 4787 \\ 4789 & 4791\end{vmatrix}\]
Write the value of the determinant \[\begin{vmatrix}2 & - 3 & 5 \\ 4 & - 6 & 10 \\ 6 & - 9 & 15\end{vmatrix} .\]
Write the cofactor of a12 in the following matrix \[\begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix} .\]
If \[A = \begin{bmatrix}5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3\end{bmatrix}\]. Write the cofactor of the element a32.
If \[\begin{vmatrix}x & \sin \theta & \cos \theta \\ - \sin \theta & - x & 1 \\ \cos \theta & 1 & x\end{vmatrix} = 8\] , write the value of x.
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
If x, y, z are different from zero and \[\begin{vmatrix}1 + x & 1 & 1 \\ 1 & 1 + y & 1 \\ 1 & 1 & 1 + z\end{vmatrix} = 0\] , then the value of x−1 + y−1 + z−1 is
Solve the following system of equations by matrix method:
5x + 7y + 2 = 0
4x + 6y + 3 = 0
Solve the following system of equations by matrix method:
3x + y = 19
3x − y = 23
Show that the following systems of linear equations is consistent and also find their solutions:
x − y + z = 3
2x + y − z = 2
−x −2y + 2z = 1
Show that each one of the following systems of linear equation is inconsistent:
x + y − 2z = 5
x − 2y + z = −2
−2x + y + z = 4
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
3x + y − 2z = 0
x + y + z = 0
x − 2y + z = 0
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
The greatest value of c ε R for which the system of linear equations, x – cy – cz = 0, cx – y + cz = 0, cx + cy – z = 0 has a non-trivial solution, is ______.
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.