Advertisements
Advertisements
प्रश्न
The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13
पर्याय
λ = 5, µ = 13
λ ≠ 5
λ = 5, µ ≠ 13
µ ≠ 13
उत्तर
\[(b) \lambda \neq 5\]
\[\text{ For a unique solution,}\left| A \right|\neq 0.\]
\[ \Rightarrow \begin{vmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \lambda\end{vmatrix} \neq 0\]
\[ \Rightarrow 1\left( 2\lambda - 9 \right) - 1\left( \lambda - 3 \right) + 1\left( 3 - 2 \right) \neq 0\]
\[ \Rightarrow 2\lambda - 9 - \lambda + 3 + 1 \neq 0\]
\[ \Rightarrow \lambda - 5 \neq 0\]
\[ \Rightarrow \lambda \neq 5\]
APPEARS IN
संबंधित प्रश्न
Find the value of a if `[[a-b,2a+c],[2a-b,3c+d]]=[[-1,5],[0,13]]`
Solve system of linear equations, using matrix method.
4x – 3y = 3
3x – 5y = 7
If A = `[(2,-3,5),(3,2,-4),(1,1,-2)]` find A−1. Using A−1 solve the system of equations
2x – 3y + 5z = 11
3x + 2y – 4z = – 5
x + y – 2z = – 3
Solve the system of the following equations:
`2/x+3/y+10/z = 4`
`4/x-6/y + 5/z = 1`
`6/x + 9/y - 20/x = 2`
Evaluate the following determinant:
\[\begin{vmatrix}\cos 15^\circ & \sin 15^\circ \\ \sin 75^\circ & \cos 75^\circ\end{vmatrix}\]
Evaluate
\[\begin{vmatrix}2 & 3 & 7 \\ 13 & 17 & 5 \\ 15 & 20 & 12\end{vmatrix}^2 .\]
Show that
\[\begin{vmatrix}\sin 10^\circ & - \cos 10^\circ \\ \sin 80^\circ & \cos 80^\circ\end{vmatrix} = 1\]
Evaluate
\[\begin{vmatrix}2 & 3 & - 5 \\ 7 & 1 & - 2 \\ - 3 & 4 & 1\end{vmatrix}\] by two methods.
Solve the following determinant equation:
Solve the following determinant equation:
If \[a, b\] and c are all non-zero and
Using determinants, find the equation of the line joining the points
(3, 1) and (9, 3)
Find values of k, if area of triangle is 4 square units whose vertices are
(−2, 0), (0, 4), (0, k)
Prove that :
Prove that :
2x + 3y = 10
x + 6y = 4
x − 4y − z = 11
2x − 5y + 2z = 39
− 3x + 2y + z = 1
x+ y = 5
y + z = 3
x + z = 4
2y − 3z = 0
x + 3y = − 4
3x + 4y = 3
2x − 3y − 4z = 29
− 2x + 5y − z = − 15
3x − y + 5z = − 11
x + 2y = 5
3x + 6y = 15
Write the value of the determinant
Write the value of the determinant \[\begin{vmatrix}2 & 3 & 4 \\ 5 & 6 & 8 \\ 6x & 9x & 12x\end{vmatrix}\]
Using the factor theorem it is found that a + b, b + c and c + a are three factors of the determinant
The other factor in the value of the determinant is
Let \[A = \begin{bmatrix}1 & \sin \theta & 1 \\ - \sin \theta & 1 & \sin \theta \\ - 1 & - \sin \theta & 1\end{bmatrix},\text{ where 0 }\leq \theta \leq 2\pi . \text{ Then,}\]
If\[f\left( x \right) = \begin{vmatrix}0 & x - a & x - b \\ x + a & 0 & x - c \\ x + b & x + c & 0\end{vmatrix}\]
The determinant \[\begin{vmatrix}b^2 - ab & b - c & bc - ac \\ ab - a^2 & a - b & b^2 - ab \\ bc - ca & c - a & ab - a^2\end{vmatrix}\]
Solve the following system of equations by matrix method:
\[\frac{2}{x} - \frac{3}{y} + \frac{3}{z} = 10\]
\[\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 10\]
\[\frac{3}{x} - \frac{1}{y} + \frac{2}{z} = 13\]
Show that the following systems of linear equations is consistent and also find their solutions:
2x + 2y − 2z = 1
4x + 4y − z = 2
6x + 6y + 2z = 3
Show that each one of the following systems of linear equation is inconsistent:
2x + 3y = 5
6x + 9y = 10
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
Solve the following for x and y: \[\begin{bmatrix}3 & - 4 \\ 9 & 2\end{bmatrix}\binom{x}{y} = \binom{10}{ 2}\]
The number of solutions of the system of equations:
2x + y − z = 7
x − 3y + 2z = 1
x + 4y − 3z = 5
Find the inverse of the following matrix, using elementary transformations:
`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
Let the system of linear equations x + y + az = 2; 3x + y + z = 4; x + 2z = 1 have a unique solution (x*, y*, z*). If (α, x*), (y*, α) and (x*, –y*) are collinear points, then the sum of absolute values of all possible values of α is ______.
If a, b, c are non-zero real numbers and if the system of equations (a – 1)x = y + z, (b – 1)y = z + x, (c – 1)z = x + y, has a non-trivial solution, then ab + bc + ca equals ______.