English

The System of Equations: X + Y + Z = 5 X + 2y + 3z = 9 X + 3y + λZ = µ Has a Unique Solution, If (A) λ = 5, µ = 13 (B) λ ≠ 5 (C) λ = 5, µ ≠ 13 (D) µ ≠ 13 - Mathematics

Advertisements
Advertisements

Question

The system of equations:
x + y + z = 5
x + 2y + 3z = 9
x + 3y + λz = µ
has a unique solution, if
(a) λ = 5, µ = 13
(b) λ ≠ 5
(c) λ = 5, µ ≠ 13
(d) µ ≠ 13

Options

  • λ = 5, µ = 13

  • λ ≠ 5

  • λ = 5, µ ≠ 13

  • µ ≠ 13

MCQ

Solution

\[(b) \lambda \neq 5\]
\[\text{ For a unique solution,}\left| A \right|\neq 0.\]
\[ \Rightarrow \begin{vmatrix}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & \lambda\end{vmatrix} \neq 0\]
\[ \Rightarrow 1\left( 2\lambda - 9 \right) - 1\left( \lambda - 3 \right) + 1\left( 3 - 2 \right) \neq 0\]
\[ \Rightarrow 2\lambda - 9 - \lambda + 3 + 1 \neq 0\]
\[ \Rightarrow \lambda - 5 \neq 0\]
\[ \Rightarrow \lambda \neq 5\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Solution of Simultaneous Linear Equations - Exercise 8.4 [Page 23]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 8 Solution of Simultaneous Linear Equations
Exercise 8.4 | Q 10 | Page 23

RELATED QUESTIONS

Let A be a nonsingular square matrix of order 3 × 3. Then |adj A| is equal to ______.


Solve system of linear equations, using matrix method.

2x – y = –2

3x + 4y = 3


Solve the system of the following equations:

`2/x+3/y+10/z = 4`

`4/x-6/y + 5/z = 1`

`6/x + 9/y - 20/x = 2`


If A \[\begin{bmatrix}1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4\end{bmatrix}\] , then show that |3 A| = 27 |A|.

 

Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}49 & 1 & 6 \\ 39 & 7 & 4 \\ 26 & 2 & 3\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin\alpha & \cos\alpha & \cos(\alpha + \delta) \\ \sin\beta & \cos\beta & \cos(\beta + \delta) \\ \sin\gamma & \cos\gamma & \cos(\gamma + \delta)\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


\[\begin{vmatrix}1 + a & 1 & 1 \\ 1 & 1 + a & a \\ 1 & 1 & 1 + a\end{vmatrix} = a^3 + 3 a^2\]


​Solve the following determinant equation:

\[\begin{vmatrix}x + 1 & 3 & 5 \\ 2 & x + 2 & 5 \\ 2 & 3 & x + 4\end{vmatrix} = 0\]

 


​Solve the following determinant equation:

\[\begin{vmatrix}3 & - 2 & \sin\left( 3\theta \right) \\ - 7 & 8 & \cos\left( 2\theta \right) \\ - 11 & 14 & 2\end{vmatrix} = 0\]

 


Show that
`|(x-3,x-4,x-alpha),(x-2,x-3,x-beta),(x-1,x-2,x-gamma)|=0`, where α, β, γ are in A.P.

 


Using determinants show that the following points are collinear:

(1, −1), (2, 1) and (4, 5)


If the points (a, 0), (0, b) and (1, 1) are collinear, prove that a + b = ab.


If the points (x, −2), (5, 2), (8, 8) are collinear, find x using determinants.


Using determinants, find the equation of the line joining the points

(1, 2) and (3, 6)


Using determinants, find the equation of the line joining the points

(3, 1) and (9, 3)


Prove that

\[\begin{vmatrix}a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ca & cb & c^2 + 1\end{vmatrix} = 1 + a^2 + b^2 + c^2\]

2x + 3y = 10
x + 6y = 4


If \[A = \begin{bmatrix}0 & i \\ i & 1\end{bmatrix}\text{  and }B = \begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix}\] , find the value of |A| + |B|.


If \[\begin{vmatrix}3x & 7 \\ - 2 & 4\end{vmatrix} = \begin{vmatrix}8 & 7 \\ 6 & 4\end{vmatrix}\] , find the value of x.


If ω is a non-real cube root of unity and n is not a multiple of 3, then  \[∆ = \begin{vmatrix}1 & \omega^n & \omega^{2n} \\ \omega^{2n} & 1 & \omega^n \\ \omega^n & \omega^{2n} & 1\end{vmatrix}\] 


Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


Solve the following system of equations by matrix method:
3x + 4y − 5 = 0
x − y + 3 = 0


Solve the following system of equations by matrix method:
x + y + z = 3
2x − y + z = − 1
2x + y − 3z = − 9


Solve the following system of equations by matrix method:
 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25


Solve the following system of equations by matrix method:
 x − y + z = 2
2x − y = 0
2y − z = 1


Solve the following system of equations by matrix method:
 8x + 4y + 3z = 18
2x + y +z = 5
x + 2y + z = 5


Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12


If \[A = \begin{bmatrix}1 & - 2 & 0 \\ 2 & 1 & 3 \\ 0 & - 2 & 1\end{bmatrix}\] , find A−1. Using A−1, solve the system of linear equations  x − 2y = 10, 2x + y + 3z = 8, −2y + z = 7.

3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


Three chairs and two tables cost ₹ 1850. Five chairs and three tables cost ₹2850. Find the cost of four chairs and one table by using matrices


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


If `alpha, beta, gamma` are in A.P., then `abs (("x" - 3, "x" - 4, "x" - alpha),("x" - 2, "x" - 3, "x" - beta),("x" - 1, "x" - 2, "x" - gamma)) =` ____________.


`abs ((1, "a"^2 + "bc", "a"^3),(1, "b"^2 + "ca", "b"^3),(1, "c"^2 + "ab", "c"^3))`


If the system of equations 2x + 3y + 5 = 0, x + ky + 5 = 0, kx - 12y - 14 = 0 has non-trivial solution, then the value of k is ____________.


In system of equations, if inverse of matrix of coefficients A is multiplied by right side constant B vector then resultant will be?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×