English

Solve the Following System of Equations by Matrix Method: 5x + 3y + Z = 16 2x + Y + 3z = 19 X + 2y + 4z = 25 - Mathematics

Advertisements
Advertisements

Question

Solve the following system of equations by matrix method:
 5x + 3y + z = 16
2x + y + 3z = 19
x + 2y + 4z = 25

Solution

Here,
\[A = \begin{bmatrix}5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4\end{bmatrix}\]
\[\left| A \right| = \begin{vmatrix}5 & 3 & 1 \\ 2 & 1 & 3 \\ 1 & 2 & 4\end{vmatrix} = 5\left( 4 - 6 \right) - 3\left( 8 - 3 \right) + 1(4 - 1)\]
\[ = - 10 - 15 + 3\]
\[ = - 22\]
\[ {\text{ Let }C}_{ij} {\text{ be the cofactors of the elements a }}_{ij}\text{ in }A\left[ a_{ij} \right].\text{ Then,}\]
\[ C_{11} = \left( - 1 \right)^{1 + 1} \begin{vmatrix}1 & 3 \\ 2 & 4\end{vmatrix} = - 2, C_{12} = \left( - 1 \right)^{1 + 2} \begin{vmatrix}2 & 3 \\ 1 & 4\end{vmatrix} = - 5 , C_{13} = \left( - 1 \right)^{1 + 3} \begin{vmatrix}2 & 1 \\ 1 & 2\end{vmatrix} = 3\]
\[ C_{21} = \left( - 1 \right)^{2 + 1} \begin{vmatrix}3 & 1 \\ 2 & 4\end{vmatrix} = - 10 , C_{22} = \left( - 1 \right)^{2 + 2} \begin{vmatrix}5 & 1 \\ 1 & 4\end{vmatrix} = 19, C_{23} = \left( - 1 \right)^{2 + 3} \begin{vmatrix}5 & 3 \\ 1 & 2\end{vmatrix} = - 7\]
\[ C_{31} = \left( - 1 \right)^{3 + 1} \begin{vmatrix}3 & 1 \\ 1 & 3\end{vmatrix} = 8 , C_{32} = \left( - 1 \right)^{3 + 2} \begin{vmatrix}5 & 1 \\ 2 & 3\end{vmatrix} = - 13 , C_{33} = \left( - 1 \right)^{3 + 3} \begin{vmatrix}5 & 3 \\ 2 & 1\end{vmatrix} = - 1\]
\[adj A = \begin{bmatrix}- 2 & - 5 & 3 \\ - 10 & 19 & - 7 \\ 8 & - 13 & - 1\end{bmatrix}^T \]
\[ = \begin{bmatrix}- 2 & - 10 & 8 \\ - 5 & 19 & - 13 \\ 3 & - 7 & - 1\end{bmatrix}\]
\[ \Rightarrow A^{- 1} = \frac{1}{\left| A \right|}adj A\]
\[ = \frac{1}{- 22}\begin{bmatrix}- 2 & - 10 & 8 \\ - 5 & 19 & - 13 \\ 3 & - 7 & - 1\end{bmatrix}\]
\[X = A^{- 1} B\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 22}\begin{bmatrix}- 2 & - 10 & 8 \\ - 5 & 19 & - 13 \\ 3 & - 7 & - 1\end{bmatrix}\begin{bmatrix}16 \\ 19 \\ 25\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 22}\begin{bmatrix}- 32 - 190 + 200 \\ - 80 + 361 - 325 \\ 48 - 133 - 25\end{bmatrix}\]
\[ \Rightarrow \begin{bmatrix}x \\ y \\ z\end{bmatrix} = \frac{1}{- 22}\begin{bmatrix}- 22 \\ - 44 \\ - 110\end{bmatrix}\]
\[ \Rightarrow x = \frac{- 22}{- 22}, y = \frac{- 44}{- 22}\text{ and }z = \frac{- 110}{- 22}\]
\[ \therefore x = 1, y = 2\text{ and }z = 5\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Solution of Simultaneous Linear Equations - Exercise 8.1 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 8 Solution of Simultaneous Linear Equations
Exercise 8.1 | Q 2.06 | Page 14

RELATED QUESTIONS

Examine the consistency of the system of equations.

2x − y = 5

x + y = 4


Examine the consistency of the system of equations.

x + 3y = 5

2x + 6y = 8


Examine the consistency of the system of equations.

x + y + z = 1

2x + 3y + 2z = 2

ax + ay + 2az = 4


Find the value of x, if

\[\begin{vmatrix}3 & x \\ x & 1\end{vmatrix} = \begin{vmatrix}3 & 2 \\ 4 & 1\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}6 & - 3 & 2 \\ 2 & - 1 & 2 \\ - 10 & 5 & 2\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}1 & 3 & 9 & 27 \\ 3 & 9 & 27 & 1 \\ 9 & 27 & 1 & 3 \\ 27 & 1 & 3 & 9\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}1 & a & a^2 - bc \\ 1 & b & b^2 - ac \\ 1 & c & c^2 - ab\end{vmatrix}\]


Without expanding, show that the value of the following determinant is zero:

\[\begin{vmatrix}\sin^2 23^\circ & \sin^2 67^\circ & \cos180^\circ \\ - \sin^2 67^\circ & - \sin^2 23^\circ & \cos^2 180^\circ \\ \cos180^\circ & \sin^2 23^\circ & \sin^2 67^\circ\end{vmatrix}\]


\[\begin{vmatrix}b + c & a & a \\ b & c + a & b \\ c & c & a + b\end{vmatrix} = 4abc\]


Prove that

\[\begin{vmatrix}\frac{a^2 + b^2}{c} & c & c \\ a & \frac{b^2 + c^2}{a} & a \\ b & b & \frac{c^2 + a^2}{b}\end{vmatrix} = 4abc\]


\[\begin{vmatrix}- a \left( b^2 + c^2 - a^2 \right) & 2 b^3 & 2 c^3 \\ 2 a^3 & - b \left( c^2 + a^2 - b^2 \right) & 2 c^3 \\ 2 a^3 & 2 b^3 & - c \left( a^2 + b^2 - c^2 \right)\end{vmatrix} = abc \left( a^2 + b^2 + c^2 \right)^3\]


Find the area of the triangle with vertice at the point:

 (0, 0), (6, 0) and (4, 3)


\[\begin{vmatrix}a + b + c & - c & - b \\ - c & a + b + c & - a \\ - b & - a & a + b + c\end{vmatrix} = 2\left( a + b \right) \left( b + c \right) \left( c + a \right)\]

5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


State whether the matrix 
\[\begin{bmatrix}2 & 3 \\ 6 & 4\end{bmatrix}\] is singular or non-singular.


Write the value of the determinant 

\[\begin{vmatrix}a & 1 & b + c \\ b & 1 & c + a \\ c & 1 & a + b\end{vmatrix} .\]

 


If the matrix \[\begin{bmatrix}5x & 2 \\ - 10 & 1\end{bmatrix}\]  is singular, find the value of x.


Let \[\begin{vmatrix}x & 2 & x \\ x^2 & x & 6 \\ x & x & 6\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\]
 Then, the value of \[5a + 4b + 3c + 2d + e\] is equal to


If  \[∆_1 = \begin{vmatrix}1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2\end{vmatrix}, ∆_2 = \begin{vmatrix}1 & bc & a \\ 1 & ca & b \\ 1 & ab & c\end{vmatrix},\text{ then }\]}




Let \[\begin{vmatrix}x^2 + 3x & x - 1 & x + 3 \\ x + 1 & - 2x & x - 4 \\ x - 3 & x + 4 & 3x\end{vmatrix} = a x^4 + b x^3 + c x^2 + dx + e\] 
be an identity in x, where abcde are independent of x. Then the value of e is


If a > 0 and discriminant of ax2 + 2bx + c is negative, then
\[∆ = \begin{vmatrix}a & b & ax + b \\ b & c & bx + c \\ ax + b & bx + c & 0\end{vmatrix} is\]




If \[A + B + C = \pi\], then the value of \[\begin{vmatrix}\sin \left( A + B + C \right) & \sin \left( A + C \right) & \cos C \\ - \sin B & 0 & \tan A \\ \cos \left( A + B \right) & \tan \left( B + C \right) & 0\end{vmatrix}\]  is equal to 


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
 x + y + z = 6
x + 2z = 7
3x + y + z = 12


2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0


3x − y + 2z = 0
4x + 3y + 3z = 0
5x + 7y + 4z = 0


If \[\begin{bmatrix}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix} = \begin{bmatrix}2 \\ - 1 \\ 3\end{bmatrix}\], find x, y, z.

Let a, b, c be positive real numbers. The following system of equations in x, y and z 

\[\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1, \frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1, - \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text { has }\]
(a) no solution
(b) unique solution
(c) infinitely many solutions
(d) finitely many solutions

x + y = 1
x + z = − 6
x − y − 2z = 3


Find the inverse of the following matrix, using elementary transformations: 

`A= [[2 , 3 , 1 ],[2 , 4 , 1],[3 , 7 ,2]]`


System of equations x + y = 2, 2x + 2y = 3 has ______


Transform `[(1, 2, 4),(3, -1, 5),(2, 4, 6)]` into an upper triangular matrix by using suitable row transformations


Solve the following system of equations x - y + z = 4, x - 2y + 2z = 9 and 2x + y + 3z = 1.


`abs ((("b" + "c"^2), "a"^2, "bc"),(("c" + "a"^2), "b"^2, "ca"),(("a" + "b"^2), "c"^2, "ab")) =` ____________.


The number of values of k for which the linear equations 4x + ky + 2z = 0, kx + 4y + z = 0 and 2x + 2y + z = 0 possess a non-zero solution is


The system of simultaneous linear equations kx + 2y – z = 1,  (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:


Using the matrix method, solve the following system of linear equations:

`2/x + 3/y + 10/z` = 4, `4/x - 6/y + 5/z` = 1, `6/x + 9/y - 20/z` = 2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×