Advertisements
Advertisements
Question
Transform
Solution
Let A =
Applying R2 → R2 – 3R1 and R3 → R3 – 2R1, we get
This is required upper triangular matrix.
APPEARS IN
RELATED QUESTIONS
Examine the consistency of the system of equations.
x + 2y = 2
2x + 3y = 3
Solve system of linear equations, using matrix method.
5x + 2y = 3
3x + 2y = 5
Solve the system of linear equations using the matrix method.
x − y + z = 4
2x + y − 3z = 0
x + y + z = 2
Evaluate
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Without expanding, show that the value of the following determinant is zero:
Evaluate the following:
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Prove that :
Prove that :
5x + 7y = − 2
4x + 6y = − 3
5x − 7y + z = 11
6x − 8y − z = 15
3x + 2y − 6z = 7
Solve each of the following system of homogeneous linear equations.
2x + 3y + 4z = 0
x + y + z = 0
2x − y + 3z = 0
If A is a singular matrix, then write the value of |A|.
If the matrix
If
If ω is a non-real cube root of unity and n is not a multiple of 3, then
The value of
If
If
Solve the following system of equations by matrix method:
3x + y = 7
5x + 3y = 12
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
Solve the following system of equations by matrix method:
x − y + z = 2
2x − y = 0
2y − z = 1
Show that the following systems of linear equations is consistent and also find their solutions:
6x + 4y = 2
9x + 6y = 3
Show that each one of the following systems of linear equation is inconsistent:
4x − 5y − 2z = 2
5x − 4y + 2z = −2
2x + 2y + 8z = −1
The management committee of a residential colony decided to award some of its members (say x) for honesty, some (say y) for helping others and some others (say z) for supervising the workers to keep the colony neat and clean. The sum of all the awardees is 12. Three times the sum of awardees for cooperation and supervision added to two times the number of awardees for honesty is 33. If the sum of the number of awardees for honesty and supervision is twice the number of awardees for helping others, using matrix method, find the number of awardees of each category. Apart from these values, namely, honesty, cooperation and supervision, suggest one more value which the management of the colony must include for awards.
A total amount of ₹7000 is deposited in three different saving bank accounts with annual interest rates 5%, 8% and
2x − y + z = 0
3x + 2y − z = 0
x + 4y + 3z = 0
Let
The system of linear equations:
x + y + z = 2
2x + y − z = 3
3x + 2y + kz = 4 has a unique solution if
If A =
x +y + z = 6
y + 3z = 11
and x -2y +z = 0
If A =
The existence of unique solution of the system of linear equations x + y + z = a, 5x – y + bz = 10, 2x + 3y – z = 6 depends on
If the system of equations x + λy + 2 = 0, λx + y – 2 = 0, λx + λy + 3 = 0 is consistent, then
The system of simultaneous linear equations kx + 2y – z = 1, (k – 1)y – 2z = 2 and (k + 2)z = 3 have a unique solution if k equals:
If a, b, c are non-zeros, then the system of equations (α + a)x + αy + αz = 0, αx + (α + b)y + αz = 0, αx+ αy + (α + c)z = 0 has a non-trivial solution if
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?