Advertisements
Advertisements
Question
If A is a singular matrix, then write the value of |A|.
Solution
Given: A is a singular matrix.
Thus,
\[\left| A \right| = 0\]
APPEARS IN
RELATED QUESTIONS
\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]
Find the value of x, if
\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]
Evaluate the following determinant:
\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]
Evaluate :
\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]
Evaluate the following:
\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]
Using properties of determinants prove that
\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]
Find the area of the triangle with vertice at the point:
(3, 8), (−4, 2) and (5, −1)
Find the area of the triangle with vertice at the point:
(2, 7), (1, 1) and (10, 8)
Using determinants show that the following points are collinear:
(3, −2), (8, 8) and (5, 2)
Using determinants show that the following points are collinear:
(2, 3), (−1, −2) and (5, 8)
Find the value of \[\lambda\] so that the points (1, −5), (−4, 5) and \[\lambda\] are collinear.
Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?
Find values of k, if area of triangle is 4 square units whose vertices are
(k, 0), (4, 0), (0, 2)
x − 2y = 4
−3x + 5y = −7
Prove that :
2x + 3y = 10
x + 6y = 4
9x + 5y = 10
3y − 2x = 8
x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10
Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0
If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.
If \[A = \left[ a_{ij} \right]\] is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.
If |A| = 2, where A is 2 × 2 matrix, find |adj A|.
For what value of x is the matrix \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\] singular?
Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\] is equal to
Solve the following system of equations by matrix method:
3x + 4y + 7z = 14
2x − y + 3z = 4
x + 2y − 3z = 0
Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2
x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0
The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has
Solve the following equations by using inversion method.
x + y + z = −1, x − y + z = 2 and x + y − z = 3
Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.
Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.
Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).
For what value of p, is the system of equations:
p3x + (p + 1)3y = (p + 2)3
px + (p + 1)y = p + 2
x + y = 1
consistent?
If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in