English

If A Is a Singular Matrix, Then Write the Value of |A|. - Mathematics

Advertisements
Advertisements

Question

If A is a singular matrix, then write the value of |A|.

 

Solution

Given: A is a singular matrix.
Thus,
\[\left| A \right| = 0\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Determinants - Exercise 6.6 [Page 90]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 6 Determinants
Exercise 6.6 | Q 1 | Page 90

RELATED QUESTIONS

\[∆ = \begin{vmatrix}\cos \alpha \cos \beta & \cos \alpha \sin \beta & - \sin \alpha \\ - \sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{vmatrix}\]


Find the value of x, if

\[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\]


Evaluate the following determinant:

\[\begin{vmatrix}67 & 19 & 21 \\ 39 & 13 & 14 \\ 81 & 24 & 26\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}a & b + c & a^2 \\ b & c + a & b^2 \\ c & a + b & c^2\end{vmatrix}\]


Evaluate :

\[\begin{vmatrix}1 & a & bc \\ 1 & b & ca \\ 1 & c & ab\end{vmatrix}\]


Evaluate the following:

\[\begin{vmatrix}0 & x y^2 & x z^2 \\ x^2 y & 0 & y z^2 \\ x^2 z & z y^2 & 0\end{vmatrix}\]


Using properties of determinants prove that

\[\begin{vmatrix}x + 4 & 2x & 2x \\ 2x & x + 4 & 2x \\ 2x & 2x & x + 4\end{vmatrix} = \left( 5x + 4 \right) \left( 4 - x \right)^2\]


​Solve the following determinant equation:
\[\begin{vmatrix}15 - 2x & 11 - 3x & 7 - x \\ 11 & 17 & 14 \\ 10 & 16 & 13\end{vmatrix} = 0\]

Find the area of the triangle with vertice at the point:

(3, 8), (−4, 2) and (5, −1)


Find the area of the triangle with vertice at the point:

(2, 7), (1, 1) and (10, 8)


Using determinants show that the following points are collinear:

(3, −2), (8, 8) and (5, 2)


Using determinants show that the following points are collinear:

(2, 3), (−1, −2) and (5, 8)


Find the value of \[\lambda\]  so that the points (1, −5), (−4, 5) and \[\lambda\]  are collinear.


Using determinants, find the area of the triangle whose vertices are (1, 4), (2, 3) and (−5, −3). Are the given points collinear?


Find values of k, if area of triangle is 4 square units whose vertices are 
(k, 0), (4, 0), (0, 2)


x − 2y = 4
−3x + 5y = −7


Prove that :

\[\begin{vmatrix}1 & b + c & b^2 + c^2 \\ 1 & c + a & c^2 + a^2 \\ 1 & a + b & a^2 + b^2\end{vmatrix} = \left( a - b \right) \left( b - c \right) \left( c - a \right)\]

 


\[\begin{vmatrix}1 & a & a^2 \\ a^2 & 1 & a \\ a & a^2 & 1\end{vmatrix} = \left( a^3 - 1 \right)^2\]

2x + 3y = 10
x + 6y = 4


9x + 5y = 10
3y − 2x = 8


x − y + 3z = 6
x + 3y − 3z = − 4
5x + 3y + 3z = 10


Solve each of the following system of homogeneous linear equations.
x + y − 2z = 0
2x + y − 3z = 0
5x + 4y − 9z = 0


If a, b, c are non-zero real numbers and if the system of equations
(a − 1) x = y + z
(b − 1) y = z + x
(c − 1) z = x + y
has a non-trivial solution, then prove that ab + bc + ca = abc.


If \[A = \left[ a_{ij} \right]\]   is a 3 × 3 diagonal matrix such that a11 = 1, a22 = 2 a33 = 3, then find |A|.

 

If |A| = 2, where A is 2 × 2 matrix, find |adj A|.


For what value of x is the matrix  \[\begin{bmatrix}6 - x & 4 \\ 3 - x & 1\end{bmatrix}\]  singular?


If \[\begin{vmatrix}x + 1 & x - 1 \\ x - 3 & x + 2\end{vmatrix} = \begin{vmatrix}4 & - 1 \\ 1 & 3\end{vmatrix}\], then write the value of x.

If \[D_k = \begin{vmatrix}1 & n & n \\ 2k & n^2 + n + 2 & n^2 + n \\ 2k - 1 & n^2 & n^2 + n + 2\end{vmatrix} and \sum^n_{k = 1} D_k = 48\], then n equals

 


Let \[f\left( x \right) = \begin{vmatrix}\cos x & x & 1 \\ 2\sin x & x & 2x \\ \sin x & x & x\end{vmatrix}\] \[\lim_{x \to 0} \frac{f\left( x \right)}{x^2}\]  is equal to


Solve the following system of equations by matrix method:

3x + 4y + 7z = 14

2x − y + 3z = 4

x + 2y − 3z = 0


Solve the following system of equations by matrix method:
3x + 4y + 2z = 8
2y − 3z = 3
x − 2y + 6z = −2


x + y − 6z = 0
x − y + 2z = 0
−3x + y + 2z = 0


The system of equation x + y + z = 2, 3x − y + 2z = 6 and 3x + y + z = −18 has


Solve the following equations by using inversion method.

x + y + z = −1, x − y + z = 2 and x + y − z = 3


Prove that (A–1)′ = (A′)–1, where A is an invertible matrix.


Show that if the determinant ∆ = `|(3, -2, sin3theta),(-7, 8, cos2theta),(-11, 14, 2)|` = 0, then sinθ = 0 or `1/2`.


Using determinants, find the equation of the line joining the points (1, 2) and (3, 6).


For what value of p, is the system of equations:

p3x + (p + 1)3y = (p + 2)3

px + (p + 1)y = p + 2

x + y = 1

consistent?


If `|(x + 1, x + 2, x + a),(x + 2, x + 3, x + b),(x + 3, x + 4, x + c)|` = 0, then a, b, care in


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×